
Design Automation for Embedded Systems September 2013

Recommendations for using Simulated Annealing in task
mapping

Heikki Orsila · Erno Salminen ·
Timo Hämäläinen

September 2013

Abstract A Multiprocessor System-on-Chip (MPSoC) may contain hundreds
of processing elements (PEs) and thousands of tasks but design productivity is
lagging the evolution of HW platforms. One problem is application task map-
ping, which tries to find a placement of tasks onto PEs which optimizes several
criteria such as application runtime, intertask communication, memory usage,
energy consumption, real-time constraints, as well as area in case that PE
selection or buffer sizing are combined with the mapping procedure. Among
optimization algorithms for the task mapping, we focus in this paper on Simu-
lated Annealing (SA) heuristics. We present a literature survey and 5 general
recommendations for reporting heuristics that should allow disciplined com-
parisons and reproduction by other researchers. Most importantly, we present
our findings about SA parameter selection and 7 guidelines for obtaining a
good trade-off made between solution quality and algorithm’s execution time.
Notably, SA is compared against global optimum. Thorough experiments were
performed with 2-8 PEs, 11-32 tasks, 10 graphs per system, and 1000 inde-
pendent runs, totaling over 500 CPU days of computation. Results show that
SA offers 4-6 orders of magnitude reduction is optimization time compared to
brute force while achieving high quality solutions. In fact, the globally opti-
mum solution was achieved with a 1.6 − 90% probability when problem size
is around 1e9-4e9 possibilities. There is approx. 90% probability for finding a
solution that is at most 18% worse than optimum.

Heikki Orsila
E-mail: heikki.orsila@iki.fi

Erno Salminen
Tampere University of Technology
E-mail: erno.salminen@tut.fi

Timo Hämäläinen
Tampere University of Technology
E-mail: timo.d.hamalainen@tut.fi

2 Heikki Orsila et al.

Keywords Simulated Annealing · task mapping · task graph · global
optimum

1 Introduction

An efficient multiprocessor SoC (MPSoC) implementation requires automated
exploration to find an efficient HW allocation, task mapping and schedul-
ing [13]. Heterogeneous MPSoCs are needed for low power, high performance
and high volume markets [37]. The central idea in MPSoCs is to increase
performance and energy-efficiency. This is achieved by efficient communica-
tion between cores and keeping clock frequency low while providing enough
parallelism.

Mapping means placing each application task onto some processing element
(PE), as depicted in Fig. 1. Task refers here to the smallest unit of computation
that can be re-located. Scheduling means determining execution timetable of
the application components on the platform. Example Fig. 1 shows that tasks 0
and 1 are mapped to PE0, task 2 is mapped to PE1, and task N−1 is mapped
to PEM−1. In a strict mapping problem, state of the system is defined as a
mapping of each task to a PE. The state is optimized with respect to given
criteria, such as system’s throughput, latency or power. The optimized criteria
is defined by a cost function whose value is minimized. For example, system’s
performance can be optimized by setting the cost function to be its total
execution time for a given program and input.

Tasks in a general mapping problem may execute arbitrary programs, de-
terministic or non-deterministic. In this paper, however, tasks are restricted
to a subset known as Kahn Process Networks (KPNs) [15]. Each PE executes

HW Platform
with M PEs

network

PE0 PE1 PEM-1

Mapping

Application
with N tasks

T0

T1

T2

TN-1
…

…

Fig. 1 Conceptual view of mapping application tasks to processing elements

Recommendations for using Simulated Annealing in task mapping 3

a program where reads are blocking, and testing for existing readable data on
a communication channel can only be done by a blocking read. This enforces
a deterministic result of the computation regardless of timing and mapping of
tasks.

A large design space must be pruned systematically, since the exploration
of the whole design space is not feasible [13]. Fast optimization procedure is
desired in order to cover reasonable design space. However, this comes with the
expense of accuracy. Iterative optimization algorithms evaluate a number of
application mappings for each resource allocation candidate. The application
is simulated for each mapping to evaluate the cost of a solution. The cost may
depend on multiple factors, such as cycle count, latency, energy consumption,
silicon area and others.

This paper investigates the use of Simulated Annealing (SA) algorithm in
task mapping. We analyze the research question of how to select SA opti-
mization parameters for a given point in design space exploration. Section 2
presents a survey of current state-of-the-art in SA task mapping. Section 4
presents our results on SA global optimum properties, and Section 5 properties
of SA acceptance functions. Section 6.1 presents recommendations for report-
ing SA results for disciplined comparisons and reproduction of the experiments
by other researchers. Section 6.2 presents recommendations for selecting SA
parameters based on related work and new analysis. Finally, we conclude the
paper with high level directions on how to improve existing state-of-the-art in
Section 7.

2 Related work

We limit the discussion about mapping heuristics to Simulated Annealing and
mention other approaches when direct comparison has been reported in liter-
ature.

2.1 Simulated Annealing algorithm

SA is a widely used metaheuristic for complex optimization problems. Term
heuristic means that optimality is not guaranteed but algorithm usually pro-
duces satisfactory results, whereas meta denotes that it can be fitted into many
kinds of problems. SA is a probabilistic non-greedy algorithm that explores
the search space of a problem by annealing from a high to a low tempera-
ture. Temperature is a historic term originating from annealing in metallurgy
where material is heated and cooled to increase the size of its crystals and re-
duce their effects. Temperature indicates the algorithm’s willingness to accept
moves to a worse state.

Probabilistic behavior means that SA can find solutions of different good-
ness between runs. Non-greedy means that SA may accept a move into a worse
state, and this allows escaping local minima. Local minimum is such a point

4 Heikki Orsila et al.

in design space where no single move can improve the cost, but perhaps two
or three consecutive moves can. The algorithm always accepts a move into a
better state. Move to a worse state is accepted with a changing probability.
This probability decreases along with the temperature, and thus the algorithm
starts as a non-greedy algorithm and gradually becomes more and more greedy.

Simulated Annealing(S, T0)
1 C ← Cost(S)
2 Sbest ← S
3 Cbest ← C
4 for i← 0 to ∞
5 do T ← Temperature(T0, i)
6 Snew ←Move(S, T)
7 Cnew ← Cost(Snew)
8 ∆C ← Cnew − C
9 if ∆C < 0 or Random() < Accept(∆C, T)

10 then if Cnew < Cbest

11 then Sbest ← Snew

12 Cbest ← Cnew

13 S ← Snew

14 C ← Cnew

15 if End-Condition()
16 then break
17 return Sbest

Fig. 2 Pseudocode of the Simulated Annealing (SA) algorithm

Fig. 2 shows the SA pseudocode. The algorithm takes initial temperature
T0 and initial state S as parameters. State is modified on every iteration. Cost
function evaluates the objective function to be optimized, e.g. by simulating
the platform. This algorithm seeks to minimize the cost. Temperature func-
tion returns the annealing temperature as a function of T0 and loop iteration
number i. Move functions generates a new state from a given state. Hence, it
re-locates some task(s) in our case and the associated cost (e.g. cycle count)
is evaluated.

This new state can be accepted as a base for the next iteration or discarded.
Move to better state is always accepted and Accept function calculates the
probability for accepting a state change when cost function difference ∆C > 0.
Random function returns a random real number in range [0, 1).

End-Condition function returns True iff optimization should be termi-
nated. Parameters of the end conditions are not shown in the pseudocode.
These may include various measures, such as the number of consecutive re-
jected moves, current and a given final temperature, current and accepted final
cost. Finally the algorithm returns the best state Sbest in terms of the Cost
function.

Recommendations for using Simulated Annealing in task mapping 5

Table 1 Publications where Simulated Annealing has been applied in Task mapping,
Scheduling, or Communication routing.

Mapping Sched. Com. Application type
Author rout.

Ali [1] x - - QoS in multisensor
shipboard computer

Bollinger [4] x - x Synthetic app.
Braun [5] x - - Batch processing tasks
Coroyer [6] x x - Synthetic app.
Ercal [10] x - - Synthetic app.
Ferrandi [11] x x - C applications partitioned with

OpenMP: Crypto, FFT, Image
decompression, audio codec

Kim [16] x x - Synthetic app.
Koch [18] x x - DSP algorithms
Lin [22] x - - Synthetic app.

x - - Synthetic app.
Nanda [24] x - - Synthetic app.
Orsila (ours) [30] x - - Synthetic app.
Ravindran [31] x x - Network processing:

Routing, NAT, QoS
Wild [36] x - - Synthetic app.
Xu [38] x - - Artificial intelligence:

rule-based expert system

of pub. 14 5 1 6
(100%) (36%) (7%) (43%)

2.2 SA in task mapping

Table 1 shows SA usage in 14 publications, each of which are summarized
below. All publications use SA for task mapping, 5 for task scheduling, and 1
also for communication routing. None uses SA simultaneously for all purposes.
There are many other methods for task mapping, such as genetic algorithms
(GA), but they are outside the scope of this paper. Synthetic app. means the
paper uses task graphs that are not directed toward any particular application,
but artificial and meant for benchmarking the mapping algorithms. SA usually
performs hundreds or thousands of iterations and therefore it is usually run
off-line. Performing SA mapping at runtime is rare.

Ali [1] optimizes performance by mapping continuously executing applica-
tions for heterogeneous PEs and interconnects while preserving two quality of
service constraints: maximum end-to-latency and minimum throughput. Map-
ping is optimized statically to increase QoS safety margin in a multisensor
shipboard computer. Tasks are initially mapped by a fast greedy heuristics,
after which SA further optimizes the placement. SA is compared with 9 other
heuristics. SA and GA were the best heuristics in comparison. SA was slightly
faster than GA, with 10% less running time.

Bollinger [4] optimizes performance by mapping a set of processes onto a
multiprocessor system and assigning interprocessor communication to multiple

6 Heikki Orsila et al.

communication links to avoid traffic conflicts. The purpose of the paper is to
investigate task mapping in general.

Braun [5] optimizes performance by mapping independent (non-communicating)
general purpose computing tasks onto distributed heterogeneous PEs. The goal
is to execute a large set of tasks in a given time period. An example task given
was analyzing data from a space probe, and send instructions back to the
probe before communication black-out. SA is compared with 10 heuristics, in-
cluding GA and Tabu search (TS). GA, SA and TS execution times were made
approximately equal to compare effectiveness of these heuristics. GA mapped
tasks were 20 − 50% faster compared to SA. Tabu mapped tasks varies from
being 50% slower to 5% faster compared to SA. SA was run with only one
mapping per temperature level, but repeating the annealing process 8 times
for two different temperature coefficients. One mapping per temperature level
means insufficient number of mappings for good exploration. However, GA is
better with the same number of mappings. GA gave the fastest solutions.

Coroyer [6] optimizes performance excluding communication costs by map-
ping and scheduling directed acyclic graphs (DAGs) to homogeneous PEs. 7
SA heuristics are compared with 27 list scheduling heuristics. SA results were
the best compared to other heuristics, but SA’s running time was two to four
orders of magnitude higher than other heuristics. The purpose of the paper is
to investigate task mapping and scheduling in general.

Ercal [10] optimizes performance by mapping DAGs onto homogeneous
PEs and a network of homogeneous communication links. Load balancing con-
straints are maintained by adding a penalty term into the objective function.
Performance is estimated with a statistical measure that depends on task map-
ping, communication profile of tasks and the distance of communicating tasks
on the interconnect network. Simulation is not used. The model assumes com-
munication is Programmed IO (PIO) rather than DMA. SA is compared with
a proposed heuristic called Task Allocation by Recursive Mincut. SA’s best
result is better than the mean result in 4 out of 7 cases. Running time of SA
is two orders of magnitude higher than the proposed heuristics.

Ferrandi [11] optimizes performance by mapping and scheduling a Hierar-
chical Task Graph (HTG) [12] onto a reconfigurable MPSoC of heterogeneous
PEs. HTGs were generated from C programs parallelized with OpenMP [33].
SA is compared with Ant Colony Optimization (ACO) [9], TS and a FIFO
scheduling heuristics combined with first available PE mapping. SA running
time was 28% larger than ACO and 12% less than TS. FIFO scheduling hap-
pens during runtime. SA gives 11% worse results (performance of the solution)
than ACO and comparable results with TS.

Kim [16] optimizes performance by mapping and scheduling independent
tasks that can arrive at any time to heterogeneous PEs. Tasks have priorities
and soft deadlines, both of which are used to define the performance metric
for the system. Dynamic mapping is compared to static mapping where arrival
times of tasks are known ahead in time. SA and GA were used as a static map-
ping heuristics. Several dynamic mapping heuristics were evaluated. Dynamic
mapping runtime was not given, but they were very probably many orders

Recommendations for using Simulated Annealing in task mapping 7

of magnitude lower than static methods because dynamic methods are exe-
cuted during the application runtime. Static heuristics gave noticeably better
results than dynamic methods. SA gave 12.5% better performance than dy-
namic methods, and did slightly better than GA. SA runtime was only 4% of
the GA runtime.

Koch [18] optimizes performance by mapping and scheduling DAGs pre-
senting DSP algorithms to homogeneous PEs. SA is benchmarked against list
scheduling heuristics. SA is found superior against other heuristics, such as
Dynamic Level Scheduling (DLS) [34]. SA does better when the proportion of
communication time increases over the computation time, and the number of
PEs is low.

Lin [22] optimizes performance while satisfying real-time and memory con-
straints by mapping general purpose synthetic tasks to heterogeneous PEs. SA
reaches a global optimum with 12 node graphs.

Nanda [24] optimizes performance by mapping synthetic random DAGs to
homogeneous PEs on hierarchical buses. The performance measure to opti-
mize is an estimate of expected communication costs and loss of parallelism
with respect to critical path (CP) on each PE. Schedule is obtained with list
scheduling heuristics. Two SA methods are presented where the second one is
faster in runtime but gives worse solutions. The two algorithms reach within
2.7% and 2.9% of the global optimum for 11 node graphs.

Ravindran [31] optimizes performance by mapping and scheduling DAGs
with resource constraints on heterogeneous PEs. SA is compared with DLS
and a decomposition based constraint programming approach (DA). DLS is
the computationally most efficient approach, but it loses to SA and DA in
solution quality. DLS runs in less than a second, while DA takes up to 300
seconds and SA takes up to 5 seconds. DA is an exact method based on
constraint programming that wins SA in solution quality in most cases, but is
found to be most viable for larger graphs where constraint programming fails
due to complexity of the problem space.

Wild [36] optimizes performance by mapping and scheduling DAGs to het-
erogeneous PEs. PEs are processors and accelerators. SA is compared with TS,
FAST [20] [21] and a proposed Reference Constructive Algorithm (ReCA). TS
gives 6− 13%, FAST 4− 7%, and ReCA 1− 6% better application execution
time than SA. FAST is the fastest optimization algorithm. FAST is 3 times as
fast than TS for 100 node graphs and 7 PEs, and 35 times as fast than SA.
TS is 10 as fast as SA.

Xu [38] optimizes performance of a rule-based expert system by mapping
dependent production rules (tasks) onto homogeneous PEs. A global optimum
is solved for the estimate by using linear programming (LP) [23]. SA is com-
pared with the global optimum. SA reaches within 2% of the global optimum
in 1% of the optimization time compared to LP. The cost function is a linear
estimate of the real cost. In this sense the global optimum is not real.

In summary, SA performs rather well on average. The differences regard-
ing solution quality are usually 1 − 10% whereas in algorithm runtimes vary
greatly, e.g. from few percents to even 100x − 1 000x. Heuristics have been

8 Heikki Orsila et al.

Table 2 Utilized move heuristics, acceptance functions, and annealing schedule in Simu-
lated Annealing. Geometric annealing schedules (G) have a temperature scaling co-efficient
“q”. Adaptive initial temperature “T0” and Stop condition are also marked. “L” is the num-
ber of iterations per temperature level, where N is the number of tasks and M is the number
of PEs.

Move Acc. Ann. T scale Adaptive #Iter per
Author function func. sched. coeff. (q) T0 stop T level (L)

Ali [1] ST, SW1 E G 0.99 - - 1
Bollinger [4] MBOL ? B N/A x ? N(N − 1)/2
Braun [5] ST IE G 0.8, 0.9 x - 1
Coroyer [6] ST, P1 E G, F 0.95 x x N(M − 1)
Ercal [10] ST E G 0.95 x - 5N(M − 1)
Ferrandi [11] ST, P4 E G 0.99 - - LFE
Kim [16] ST, SW1, E G 0.99 - - 1

P3
Koch [18] Koch E K N/A x x N
Lin [22] MLI E G 0.8 x x LLI
Nanda [24] ST, SW2 E G 0.9 - - 5000
Orsila [30] ST NIE G 0.95 x x N(M − 1)
Ravindran [31] H1 E K N/A - x ?
Wild [36] ST, EM ? G ? ? x ?
Xu [38] SW1 E G 0.5 x x N

Diff. choices 11 4 4 5 ≥2 ≥2 ≥8

Most common ST E G 0.95, 0.99 x x adaptive
(64%) (71%) (79%) (21%,21%) (57%) (50%) (57%)

commonly evaluated for systems with 6-8 PEs and the task graph sizes vary
greatly, from 12-4000 tasks. So far, most of the comparisons were between
heuristics and unfortunately not against global optimum (11 to 14 PE cases).
Global optimum is the exact comparison point and should be sought when
feasible. Even if near-optimal results in a small test cases do not guarantee
performance in larger problem, at least they show the performance trend (e.g.
linear vs. quadratic degradation). Nevertheless, extrapolating the performance
is somewhat dubious.

3 SA parameters

Table 2 shows parameter choices for the publications presented in Section 2.2.
Move and acceptance functions, and annealing schedule, and the number of
iterations per temperature level were investigated, where N is the number
of tasks and M is the number of PEs. “?” indicates the information is not
available. “N/A” indicates that the value does not apply to a particular pub-
lication. Detailed explanation of parameters is presented in Sections 3.1, 3.2
and 3.3.

Recommendations for using Simulated Annealing in task mapping 9

3.1 Move functions

Table 2 shows 11 different move functions applied in the publications. There
are two kinds of functions. Agnostic ones do not consider application or plat-
form structure at all, whereas the others may weigh some tasks more than
rest.

Single Task (ST) move takes one random task and moves it to a random
PE. It is the most common move heuristics, 9 out of 14 publications use it.
It is not known how many publications exclude the current PE from solutions
so that always a different PE is selected by randomization. Excluding the
current PE is useful because evaluating the same mapping again on consecutive
iterations is counterproductive.

EM [36] is a variation of ST that limits task randomization to nodes that
have an effect on critical path length in a DAG. The move heuristics is evalu-
ated with SA and TS. SA solutions are improved by 2− 6%, but TS solutions
are not improved. Using EM multiplies the SA optimization time by 50−100x,
which indicates it is dubious by efficiency standards. However, using EM for
TS approximately halves the optimization time!

Swap 1 (SW1) move is used in 3 publications. It chooses 2 random tasks
and swaps their PE assignments. These tasks should preferably be mapped on
different PEs. MBOL is a variant of SW1 where task randomization is altered
with respect to annealing temperature. At low temperatures, only the tasks
that are close in system architecture are considered for swapping. At high
temperatures more distant tasks are considered.

Priority move 4 (P4) is a scheduling move that swaps the priorities of two
random tasks. This can be viewed as swapping positions of two random tasks
in a task permutation list that defines the relative priorities of tasks. P1 is a
variant of P4 that considers only tasks that are located on the same PE. A
random PE is selected at first, and then priorities of two random tasks on that
PE are swapped. P3 scheduling move selects a random task, and moves it to
a random position in a task permutation list.

Hybrid 1 (H1) is a combination of both task assignment and scheduling
simultaneously. First ST move is applied, and then P3 is applied to the same
task to set a random position on a permutation list of the target PE. Koch [18]
is a variant of H1 that preserves precedence constraints of the moved task in
selecting the random position in the permutation of the target PE. That is,
schedulable order is preserved in the permutation list.

MLI is a combination of ST and SW1 that tries three mapping alterations.
First, tries ST greedily. The move heuristics terminates if the ST move im-
proves the solution, otherwise the move is rejected. Then SW1 is tried with
SA acceptance criterion. The move heuristics terminates if the acceptance cri-
terion is satisfied. Otherwise, ST is tried again with SA acceptance criterion.

ST is the most favored mapping move. Heuristics based on swapping or
moving priorities in the task priority list are the most favored scheduling
moves. The choice and impact of mapping and scheduling moves have not
been studied thoroughly.

10 Heikki Orsila et al.

3.2 Acceptance functions

Table 2 shows that 4 different acceptance functions have been used in publi-
cations. Acceptance function takes the change in cost ∆C and temperature T
as parameters. There are 3 relevant cases to decide whether to accept or reject
a move.

1. ∆C < 0 is trivially accepted since the cost decreases.
2. ∆C = 0 is probabilistically often accepted. The probability is usually 0.5

or 1.0.
3. ∆C > 0 is accepted with a probability that decreases when T decreases,

or when ∆C grows.

The most common choice is exponential acceptor function (denoted with
E in the table)

Accept(∆C, T) = exp(
−∆C
T

). (1)

The probabilities fall into range [0, 1.0] which means that quite many worsening
moves are accepted. Unfortunately, the behavior depends heavily on the ratio
of cost (depends on system) and temperature (derived by SA developer).

In order to avoid manual parameter tuning, Orsila [30] [27] uses the nor-
malized inverse exponential function (NIE)

Accept(∆C, T) =
1

1 + exp(∆C
0.5 C0 T

)
. (2)

First of all, temperature level T is in normalized range (0, 1] regardless of the
system. Moreover, ∆C is normalized with respect to initial cost C0. Second,
the denominator part is always ≥ 2, and hence probabilities are in range [0,
0.5].

The normalized exponential (NE) acceptor

Accept(∆C, T) = exp(
−∆C

0.5 C0 T
) (3)

uses similar normalizations as NIE acceptor (equation 2). The difference is that
Accept(0, T) = 1.0 for NE (just like E) and 0.5 for NIE. Fig. 3 illustrates the
differences. X-axis shows the temperature. It decreases during the process, and
hence optimization proceeds from right to left. Y-axis shows the acceptance
probability. The lines show the acceptance probabilities for moves that are 5%
and 30% worse than current one. NE was found to be slightly better than NIE
in [25] (see Section 5.1).

Braun [5] uses an inverse exponential function (IE)

Accept(∆C, T) =
1

1 + exp(∆CT)
. (4)

Temperature normalization is not used, but the same effect is achieved by
setting the initial temperature properly: T0 = C0.

Using an exponential acceptor and dynamic initial temperature is the most
common choice.

Recommendations for using Simulated Annealing in task mapping 11

NE, ΔC=5%

NE, ΔC=30%

NIE, ΔC=5%

NIE, ΔC=30%

T0Tf

0.00

0.25

0.50

0.75

1.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

A
cc

e
p

ta
n

ce
 p

ro
b

a
b

a
il

it
y

Normalized temperature

Fig. 3 Probabilities of Normalized Exponential (NE) and Normalized Inverse Exponential
(NIE) acceptance function. Small worsening moves are accepted with higher probability.
Moreover, NE accepts nearly twice as many moves as NIE at high temperatures (beginning
of optimization).

T0

Tf

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

T
e
m
p
e
ra
tu
re

Itera on

q=0.95, L=16

q=0.9, L=16

q=0.95, L=1

q=0.9, L=1

Fig. 4 Examples of geometric annealing schedule with two scaling coefficients q = 0.95 and
q = 0.9. Moreover, two iteration counts are shown L = 1 and L = 16. Too small q and L
will terminate SA quickly and likely cause sub-optimal results.

3.3 Annealing schedule

Table 2 shows that 4 different annealing schedules have been used in publi-
cations. The annealing schedule is a trade-off between solution quality and
optimization time. The annealing schedule defines the temperature levels and
the number of iterations for each temperature level. Optimization starts at the
initial temperature T0 and ends at final temperature Tf . These may not be

12 Heikki Orsila et al.

constants, in which case initial temperature selection and/or stopping criteria
are adaptive. Stopping criteria defines when optimization ends.

Geometric temperature scale (G) is the most common annealing schedule
(11 out of 14). Temperature T is multiplied by a factor q ∈ (0, 1) to get the
temperature for the next level, that is,

Tnext = qT. (5)

Usually several iterations are spent on a given temperature level before switch-
ing to the next level. Scaling factor q is most often 0.95 or 0.99 in literature.
Some works use q = 0.9 which was also used by Kirkpatrick et al. who pre-
sented SA [17]. They used SA for partitioning circuits to two chips. This is
analogous to mapping tasks onto two PEs. Fig. 4 shows temperature as a
function of iteration count for 4 different schedules. Naturally, temperature
decreases faster with small q and optimization will terminate quicker. More-
over, iteration count per temperature level has a major impact (see subsection
3.5).

Bollinger’s schedule [4], denoted B, consider the size of improvement dur-
ing scaling. They computes a ratio R of minimum cost to average cost on a
temperature level, and then applies a geometric temperature multiplier

Tnext = min(R, qL)T, (6)

where qL is an experimentally chosen lower bound for the temperature multi-
plier. qL varied in range [0.9, 0.98].

Koch [18] and Ravindran [31], denoted K, use a dynamic q factor that
depends on the statistical variance of cost at each temperature level. The
temperature is calculated with

Tnext =
T

1 + T ln(1+δ)
3 σT

(7)

where δ is an experimental parameter used to control the temperature step
size and σT is the standard deviation of cost function on temperature level
T . Higher δ or lower σT means a more rapid decrease in temperature. Koch
suggests δ in range [0.25, 0.50].

Coroyer [6] experimented with a fractional temperature scale (F). Tem-
perature T is calculated as Ti = T0

i where T0 is the initial temperature and i
is the iteration number starting from 1. Fractional temperature was found to
be worse than geometric.

3.4 Adaptivity in start and stop conditions

The choice of initial temperature T0 can be chosen experimentally or method-
ically. Ten works present methods to set T0 based on given problem space
characteristics and desired acceptance criteria for moves [26] [29] [30] [5] [4]
[6] [10] [18] [22] [38]. For example, T0 can be set purely based on simulation

Recommendations for using Simulated Annealing in task mapping 13

so that T0 is raised high enough so that average move acceptance probability
p is high enough for aggressive statistical sampling of the problem space, e.g.
P ∼ 0.9 [6] [18]. In contrast, our method determines T0 from the task graph
and the system architecture sizes [26] [29] [30].

There are several common stopping criteria. For example, optimization
ends when a given Tf has been reached [6] [18], a given number of consecutive
rejections happen, a given number of consecutive moves has not improved the
solution, a given number of consecutive solutions are identical [6], or a solution
(cost) with given quality is reached [18]. These criteria can also be combined.
Constants associated with these criteria are often decided experimentally, but
adaptive solutions exist too. We use adaptive Tf that is computed from prob-
lem space similarly to T0 [26] [29] [30].

3.5 Iteration per temperature level

The number of iterations per temperature level L is defined as an experimental
constant or a function of the problem space. It affects the schedule and hence
also acceptance function notably, as highlighted in Fig. 4. No single method
is clearly more common than others, but functions are more common than
constants (8 vs. 4 papers). A function of the problem space (based on number
of tasks and PEs; and cost) is more widely applicable, but a constant can be
more finely tuned to a specific problem. Parameter L is often dependent on
task count N and PE count M . Ercal [10] proposes L that is proportional to
N(M − 1), the number of neighboring solutions in the mapping space.

Lin [22] uses an adaptive number of iterations per temperature level (LLI).
Their approach starts with L0 = N(N +M) at T0. The number of iterations
for the next temperature level is calculated by Lnext = min(1.1L,N(N +
M)2). However, on each temperature level they compute an extra X − L
iterations iff X > L, where X = 1

exp((Cmin−Cmax)/T) and Cmin and Cmax are

the minimum and maximum costs on the temperature level T . They compute
initial temperature as T0 = a + b, where a is the maximum execution cost of
any task at any PE, and b is the maximum communication cost between any
two tasks. Then they compute T0 average and standard deviation of cost at
T0 by sampling a number of moves. The temperature is doubled (once) if the
minimum and maximum cost is not within two standard deviations from the
average.

Ferrandi [11] has adaptive number of iterations per temperature level (LFE).
Temperature level is switched on the first accepted move on the temperature
level. However, there can be arbitrarily many rejected moves.

4 On global optimum results

This section analyzes how many mapping iterations are needed to reach a given
solution quality. SA convergence rate and the number of mapping iterations

14 Heikki Orsila et al.

Table 3 The optimization cases for brute force optimization. For each case we find global
optimum for 10 graphs generated with KPN generator. G means 109.

PEs Nodes Brute force iter- Mappings Brute force runtime for
(M) (N) ations per graph per second 10 graphs [CPU days]

2 32 231 ∼ 2.1G 3 725 67
3 21 320 ∼ 3.5G 3 583 113
4 17 416 ∼ 4.3G 2 745 181
6 13 612 ∼ 2.2G 2 523 100
8 11 810 ∼ 1.1G 2 193 57

is compared with respect to global optimum solutions. The effect of SA pa-
rameters on convergence rate and quality of solution is analyzed. Specifically,
the effect of L value and acceptance function is analyzed with respect to the
number of mapping iterations and solution quality. We present convergence
results with reference to global optimum solutions.

One difficulty in experiments with heuristics is the choice of appropriate
reference point. Unfortunately, a global optimum is hard to find for large task
graphs since the mapping problem is in NP-complexity class. Therefore, we
present our thorough experiment where SA is compared to global optimum
that was found with exhaustive search. Effectiveness of heuristics may decrease
rapidly as the number of task nodes grows. One task can be placed on any
of the M PEs and hence the graphs requires an N items long vector to store
the full mapping. The total number of mappings X for N tasks and M PEs
is X = MN . The number of mappings grows exponentially with respect to
tasks, and polynomially with respect to PEs. Adding PEs is preferable to
adding nodes from this perspective.

4.1 Experiment setup

Our SA with automatic temperature (SA+AT) algorithm in [30] is further
analyzed with respect to global optimum convergence. The automatic temper-
ature algorithm defines the start temperature T0, final temperature Tf , and
iteration per temperature level L so that optimality and SA runtime are bal-
anced. SA+AT is applied to problem space of variable number of PEs and
nodes with Kahn Process Networks (KPNs). Specifically, we brute force solve
the problem for cases shown in Table 3, and then compare SA+AT heuristics
with the brute force global optimum results.

More than 2 PEs would be too costly to compute in brute force for 32 or
more nodes. Already now, the experiments together required over 500 days of
CPU time. Therefore, we limited the number of nodes for each case as follows.
The number of nodes for each case is picked so that the number of brute force
iterations to find global optimum is the same within factor 0.5 to 2. As one
task mapping was always fixed to one PE, the brute force complexity of the
problem is X = 231 = 2 147 483 648 ∼ 2.1×109 mappings for each graph. Note,
fixing one node is a valid choice because PEs are homogeneous and connected

Recommendations for using Simulated Annealing in task mapping 15

with a single shared bus in our cases. Then, given M PEs, we selected number
of nodes N so that following equation roughly holds: MN−1 = X.

In Table 3, mappings per second determines the speed at which brute force
optimization can make progress. The average for 2 and 8 PE cases varies by a
factor of 1.7x. Optimization time in brute force and SA is dominated by the
time to evaluate a mapping. The number of CPU days consumed in the brute
force experiment is also presented. Note that since 10 graphs were optimized
for each case, one tenth of this value presents brute force optimization time
for a single graph.

Ten synthetic graphs were generated with kpn-generator [19] for each sys-
tem size. For 2 PE graphs target distribution parameter was set to 10%, in
other cases 30%. Target distribution defines the relative number of tasks that
can act as a target for each task. For example, 10% target distribution for a
32 node graph means each task can communicate with at most 3 other tasks.
All graphs were cyclic graphs (default) and b-model parameter for both com-
munication size and computation time burstiness was set at 0.7 (default).

SA+AT was 1000 times independently for each of the 10 graphs for each
system size. We measured the proportion SA runs that come within p percent
of global optimum cost. Here, we use execution time t as the cost. We measured
the number of SA+AT runs that got execution time t ≤ (1 + p)to, where p is
the execution time overhead compared to global optimum execution time to.
Although the graphs generated by kpn-gen are cyclic, each tasks is activated a
certain fixed number of times. Execution of the graph is complete when there
are no more activations and that instant defines the execution time.

2 PE graphs for the experiment available at DCS task mapper web page [7]
under the section “Experimental data”. The experiment data for 3, 4, 6 and
8 PEs is available at [8]. The first case with 2 PEs used NIE acceptor, but
once NE was found better it was used for cases with 3− 8 PEs. A reference C
implementation of the SA+AT algorithm is also available at [32]. The experi-
ment can be repeated with a GNU/Linux system by using DCS task mapper
and jobqueue [14].

4.2 Example convergence with one graph

Let us first consider the difficulty of the mapping. Fig. 5 which shows the task
graph execution time for one graph plotted against the number of mappings.
All possible mapping combinations for 32 nodes and 2 PEs were computed with
brute force search. One node mapping was fixed and the rest 31 were which
resulted in 231 mappings. The initial execution time is 875 µs (all tasks on a
single PE), mean 1033 µs and standard deviation 113 µs. It is interesting to
note that there is exactly one optimum mapping which results in 535 µs. That
is nearly 2x as fast as average and about 3.2x as fast as the worst case. Hence,
mapping has a large impact on performance but optimal case is extremely
unlikely to be found with random choice. It is like a needle in a haystack.

16 Heikki Orsila et al.

0 200 400 600 800 1000 1200 1400 1600 1800

Task graph execution time / us

1

10

100

1000

10000

100000

1000000

10000000

N
u
m

b
e
r

o
f

m
a
p
p
in

g
s

/
1

Task graph execution time vs number of mappings

Fig. 5 Task graph execution time for one graph plotted against the number of mappings.
All possible mapping combinations for 32 nodes and 2 PEs were computed with brute
force search. One node mapping was fixed. 31 node mappings were varied resulting into
231 ≈ 2.1× 109 mappings. The initial execution time is 875 µs, mean 1033 µs and standard
deviation 113 µs. There is only one mapping that reaches the global optimum 535 µs.

Table 4 The number of mappings within p% global optimum computed with a brute force
search. Furthermore, proportion of SA runs that converged to that are also shown. Note
that there are only very few good mappings out of 2 milliard. Higher SA run proportion is
better.

Number of SA run
p = t

to
− 1 mappings proportion

+0% 1 2.1%
+1% 1 2.1%
+2% 4 5.8%
+3% 8 11.2%
+4% 16 17.1%
+5% 30 19.8%
+6% 45 21.2%
+7% 74 28.2%
+8% 127 34.7%
+9% 226 40.5%

+10% 355 49.0%

Table 4 shows how many SA+AT runs got execution time overhead p or less
compared to global optimum execution time to. It also shows the associated
number of mappings within that range computed from the brute force search.

There is only one mapping that is the global optimum: 535 µs but SA
reaches it in 2.1% of the runs which is a very good result considering the
difficulty of this mapping problem. Repeating SA yields the global optimum
in approximately 105 iterations. Purely random mapping (RM) would find

Recommendations for using Simulated Annealing in task mapping 17

Fig. 6 SA+AT convergence with respect to global optimum with 2 PEs and 32 task nodes,
as in Table 5. Curves show proportion of SA+AT runs that converged within p from global
optimum for a given value of L. Lower p value on X-axis is better. Higher probability on
Y-axis is better. SA+AT chooses L = 32.

global optimum in 109 iterations in approximately half the runs. RM only
converges within 13% of the global optimum in a million iterations.

Interestingly there is only one mapping that is the worst solution: 1708 µs.
Reversing the cost difference comparison in SA yields the worst solution in
0.9% of the runs. The SA algorithm can therefore also find the global maxi-
mum.

4.3 Convergence results for 10 graphs

Table 5 shows the execution time overheads for 2 PEs and 32 tasks considering
all the 10 task graphs. The values are well aligned with Table 4 and also
shown in Fig. 6. The first row, p = 0%, means the global optimum (shortest
execution time). p = 10% means execution time no more than 10% over the
global optimum. The last two rows show mean and median values for the
number of mappings tried in a single SA+AT run. SA uses only small fraction
of the brute force iterations, but does not always converge to a global optimum.
However, the optimum result is obtained in 0.6− 15.2% of cases depending on
L. However, slightly looser bound p = +5% is already reached with 7.6−64.9%
of runs which is very good. For each L, the 90% probability level is marked
in boldface in the table and dotted vertical lines in Fig. 6 show corresponding
the overhead p.

Determining the cost is the most time consuming operation, as it usually
requires some sort of simulation. Therefore, the number of mapping iterations
should minimized to obtain reasonable runtime for the heuristic. The runtime

18 Heikki Orsila et al.

Table 5 SA+AT convergence with respect to global optimum for 2 PEs and 32 nodes.
Values in table show proportion of SA+AT runs that converged within p from global opti-
mum. The higher value is better. Experiment varied parameter L = 16−256 and automatic
parameter selection method of SA+AT chooses L = 32. The 90% level is marked in boldface
on each column.

Proportion of runs within limit p
L value

p = t
to
− 1 16 32 64 128 256

+0% 0.006 0.016 0.038 0.080 0.152
+1% 0.010 0.026 0.061 0.129 0.232
+2% 0.023 0.051 0.117 0.224 0.365
+3% 0.039 0.084 0.173 0.311 0.477
+4% 0.057 0.119 0.230 0.391 0.558
+5% 0.076 0.154 0.287 0.468 0.649
+6% 0.101 0.201 0.355 0.553 0.732
+7% 0.137 0.264 0.439 0.653 0.834
+8% 0.178 0.337 0.536 0.757 0.919
+9% 0.220 0.400 0.606 0.819 0.949

+10% 0.267 0.461 0.675 0.870 0.969
+11% 0.319 0.531 0.747 0.917 0.985
+12% 0.378 0.605 0.812 0.952 0.994
+13% 0.449 0.664 0.864 0.972 0.998
+14% 0.509 0.726 0.906 0.983 0.999
+15% 0.568 0.780 0.935 0.992 1.000
+16% 0.627 0.831 0.958 0.996
+17% 0.681 0.868 0.974 0.998
+18% 0.731 0.903 0.984 0.999
+19% 0.778 0.930 0.990 0.999
+20% 0.820 0.953 0.994 1.000
+21% 0.853 0.968 0.997
+22% 0.884 0.979 0.998
+23% 0.908 0.985 0.999
+24% 0.931 0.991 1.000
+25% 0.947 0.995
+26% 0.961 0.996
+27% 0.971 0.998
+28% 0.980 0.999
+29% 0.987 1.000
+30% 0.992

.
+37% 1.000

mean mappings 840 1 704 3 516 7 588 19 353
median mappings 836 1 683 3 437 7 428 18 217

of the heuristic is often negligible, and hence it pays off to design a more
complex algorithms which cleverly reduces the iteration count.

Table 6 shows the expected number of mappings needed to obtain a result
within p percent of global optimum by repeatedly running SA+AT. They are
derived from convergence rates. For example take a look at cell p = 5%, L = 16
in Table 5. It shows that roughly 7.6% of the runs reached that performance.
Dividing the mean number of mappings with that, gives 840

0.0757 = 11 099, which

Recommendations for using Simulated Annealing in task mapping 19

Table 6 Approximate expected number of mappings for SA+AT to reach performance
within p percent from the global optimum with 2 PEs and 32 nodes. Values are derived
from Table 5. SA+AT chooses L = 32. The best values (smallest) are in boldface on each
row.

Estimated number of mappings
L value

p 16 32 64 128 256

+0% 137 741 108 507 92 766 94 966 127 744
+1% 84 022 65 021 57 921 58 865 83 347
+2% 36 531 33 208 29 947 33 919 53 023
+3% 21 767 20 402 20 334 24 429 40 556
+4% 14 793 14 340 15 300 19 406 34 683
+5% 11 099 11 084 12 242 16 206 29 820
+6% 8 311 8 471 9 907 13 721 26 439
+7% 6 155 6 458 8 001 11 627 23 208
+8% 4 723 5 060 6 561 10 027 21 059
+9% 3 812 4 255 5 804 9 264 20 402

+10% 3 150 3 695 5 212 8 724 19 970
+11% 2 635 3 208 4 708 8 276 19 654
+12% 2 221 2 817 4 328 7 972 19 472
+13% 1 873 2 564 4 069 7 810 19 394
+14% 1 651 2 348 3 881 7 717 19 367
+15% 1 480 2 183 3 761 7 647 19 357
+16% 1 340 2 051 3 670 7 618
+17% 1 234 1 963 3 609 7 604
+18% 1 149 1 886 3 572 7 595
+19% 1 080 1 832 3 550 7 593
+20% 1 025 1 787 3 537 7 589
+21% 985 1 760 3 526
+22% 950 1 741 3 524
+23% 926 1 730 3 520
+24% 903 1 719 3 518
+25% 888 1 713
+26% 874 1 710
+27% 865 1 706
+28% 857 1 705
+29% 851 1 704
+30% 847
+31% 845

.
+37% 841

mean 840 1 704 3 516 7 588 19 353
median 836 1 683 3 437 7 428 18 217

is shown in Table 6. Automatically selected L value works rather well as it has
the smallest or second smallest iteration count for each values of p.

Note that convergence is not a guarantee but probabilistic, which means
the actual global optimum might never be reached. Brute force for 2 PEs uses
2.0 × 104 − 2.3 × 104 times the iterations compared to SA, for L = 32 and
L = 64 respectively. Hence, SA offers 4 orders of improvement over brute force.
Moreover, results within 3% of global optimum are reached with 5 orders of

20 Heikki Orsila et al.

Table 7 Global optimum convergence rate varies between the tested 10 32-node graphs
and L values. Column minimum denotes the hardest graph and maximum the easiest one.
Value 0% in Min column means there was a graph for which global optimum was not found
in 1000 SA+AT runs. Note, the Mean column has same values as the p = 0% row in Table 5.

L Min (%) Mean (%) Median (%) Max (%)

16 0.0 0.6 0.4 1.6
32 0.1 1.6 0.9 4.7
64 0.3 3.8 2.9 8.6

128 0.3 8.0 6.9 15.7
256 0.4 15.2 15.6 27.8

magnitude improvement in iterations by using the SA+AT. Results within
16% are reached with 6 orders of magnitude improvement.

4.4 Differences between graphs

There are of course differences between 10 tested graphs. Table 7 shows the
convergence rate variance between graphs for L values 16− 256 for 2-PE case.
Minimum and maximum convergence rates vary by a factor of 50x, approx-
imately. Doubling L approximately doubles the mean convergence rate. For
L ≥ 32 global optimum was found for each graph when SA was run 1000
times. However, L should be scaled according to the problem. Otherwise, a
small L obtains poor results with large problems, or a large value wastes time
with simple problems.

With L = 256 the hardest 32-node graph converged with probability 0.4%,
but the same graph converged within 1% with 4.4% probability, within 2%
with 8.8% probability, and within 3% with 22.3% probability. Sacrificing just
3% from optimum more than doubles the convergence rate on average, as
shown by Table 5.

The easiest graph converged to optimum with 27.8% probability, but within
3% with just little more likely, with 32.6% probability. This indicates that it
does not have many solutions near the global optimum, but hitting the global
optimum is rather probable (27.8%). This is opposite to the hardest graph
where hitting the global optimum is hard (probability 0.4%), but there are
surprisingly many solutions within 3% that are found with 22.3% probabil-
ity. Such differences necessitate that evaluation of a heuristic uses many task
graphs.

4.5 Applicability of SA on larger problems

SA performed well on a 2-PE case and the experiments were repeated larger
PE counts. As mentioned, task count was reduced since otherwise brute force
solution would be infeasible. Tables 8 and 9 shows the results for 8 PEs and
11 tasks. The result tables for N = 3, 4, 6 PEs are found in Appendix.

Recommendations for using Simulated Annealing in task mapping 21

Table 8 Proportion of SA+AT runs that converged within p from global optimum for 8
PEs and 11 nodes. A higher value is better. SA+AT chooses L = 77.

Proportion of runs within limit p
L value

p = t
to
− 1 16 32 64 77 128 256 512

+0% 0.374 0.615 0.698 0.715 0.768 0.837 0.891
+1% 0.496 0.722 0.788 0.803 0.854 0.918 0.960
+2% 0.567 0.777 0.849 0.862 0.904 0.946 0.981
+3% 0.671 0.832 0.877 0.882 0.914 0.950 0.981
+4% 0.726 0.854 0.900 0.904 0.932 0.956 0.983
+5% 0.769 0.865 0.904 0.907 0.934 0.956 0.983
+6% 0.830 0.909 0.929 0.929 0.942 0.957 0.983
+7% 0.856 0.911 0.929 0.930 0.942 0.957 0.983
+8% 0.947 0.992 0.998 0.998 0.999 1.000 1.000
+9% 0.962 0.999 1.000 1.000 1.000

+10% 0.974 1.000
+11% 0.986

.
+24% 1.000

mean mappings 914 4 730 27 227 34 502 58 206 116 427 232 856
median mappings 885 3 330 28 932 34 961 58 116 116 336 232 689

Table 9 Approximate expected number of mappings for SA+AT with 8 PEs and 11 nodes.
SA+AT chooses L = 77.

Estimated number of mappings
L value

p 16 32 64 77 128 256 512

+0% 2 442 7 690 39 013 48 242 75 780 139 134 261 313
+1% 1 843 6 549 34 570 42 983 68 133 126 869 242 559
+2% 1 613 6 085 32 055 40 031 64 388 123 047 237 487
+3% 1 363 5 685 31 056 39 136 63 697 122 594 237 269
+4% 1 260 5 536 30 252 38 154 62 433 121 760 236 931
+5% 1 189 5 468 30 115 38 028 62 346 121 760 236 931
+6% 1 102 5 206 29 314 37 131 61 771 121 608 236 907
+7% 1 068 5 192 29 295 37 115 61 771 121 608 236 907
+8% 966 4 768 27 293 34 558 58 247 116 427 232 856
+9% 951 4 733 27 227 34 502 58 206

+10% 939 4 732
+11% 927 4 732

.
+17% 917 4 730
+18% 917

.
+29% 914

mean 914 4 730 27 227 34 502 58 206 116 427 232 856
median 885 3 330 28 932 34 961 58 116 116 336 232 689

22 Heikki Orsila et al.

(a) Cost as a function of iterations.

(b) Impact of task on solution quality and iterations count

Fig. 7 Convergence rates for M=2− 8 PEs with automatically selected L values (32− 77).

Convergence is faster with 8 PEs than 2 PEs. First of all, the problem
size is smaller (1.1G < 2.1G) but that is not the only reason. Task count is
also smaller (N = 11 < N = 32) and this has bigger impact, as evident from
Tables 13-18. Note that once convergence proportion is rounded to 1.000 no
more values are shown, but iterations counts do still increase very little (e.g.
L = 32, p = 11− 17%).

Fig. 7(a) we notice how quickly SA converges towards global optimum
with all tested PE counts. Fig. 7(b) plots the probability of reaching solutions
p = 0% (optimum) and p = 5% as a function of task count (left Y axis). Note
that problem sizes are roughly equal from 1.1G to 4.3G solutions which allows
estimating the impact of task count. Moreover, the expected iteration counts
are shown on the right Y axis. Iteration ocunt for optimum solution increases
with task count and has a peculiar spike at 20 tasks (3 PEs). In contrary,
iterations count changes only modestly for for p = 5%.

Recommendations for using Simulated Annealing in task mapping 23

Table 10 Relative optimization time for reaching within p percent of global optimum.
Time to reach the global optimum is scaled 1.0 time units for each PE count.

p 2 PEs 3 PEs 4 PEs 6 PEs 8 PEs

0 1.000 1.000 1.000 1.000 1.000
5 0.102 0.056 0.347 0.707 0.788

10 0.034 0.023 0.160 0.600 0.715
15 0.020 0.015 0.110 0.579 0.715

Reaching the optimum is most likely with 11 tasks and least likely with
32 tasks (90.1% vs. 1.6%). Sacrificing the quality by 5% increases the likely-
hoods notably (99.1%, 15.4%). The shapes of probability curve seem reciprocal,
i.e. y = 1/x. Although the probability of a good solution drops quickly, the
knee-point is around 20 tasks and the drop after that is much smaller. This
gives hope that decent results could be achieved with larger task counts, but
confirming that would need very heavy brute force runs, which are currently
infeasible.

Table 10 shows relative optimization time for each PE case when target-
ing within p percent of the global optimum. The table shows that reaching
a solution within 5 percent of the global optimum can mean a significant
optimization time save. This is especially true for 2 and 3 PE cases where
probability of reaching global optimum with a single SA+AT run is very low.
For 2 PEs, reaching within 5% of optimum takes only 1/10 of the optimization
time, and within 10% of optimum takes only 1/29 of time. For 3 PEs, these
correposding cases take just 1/18 and 1/43 of time. We observe that repeating
SA several times for a given problem is a benefitial strategy for finding good
solutions when the probability of reaching an optimum solution is low for one
optimization run.

Furthermore, executing one round of SA+AT takes between 0.4s and 12.6s
for 2 and 8 PEs. Expected time to reach global optimum with SA+AT is 29.1s
for 2 PEs, 49.8s for 3 PEs, 12.7s for 4 PEs, 5.9s for 6 PEs and 22.0s for 8
PEs. Sacrificing solution quality to be within 5 percent of the global optimum
decreases optimization time so that it is 2.9s for 2 PEs, 2.8s for 3 PEs, 4.4s
for 4 PEs, 4.2s for 6 PEs and 17.3s for 8 PEs.

Results show that largeN makes optimization more complex although total
number of solutions MN is rather constant. We suspect that this might be due
to homogeneity of our HW platform. For example, let us assume that we move
all tasks from PE0 to PE1, PE1 → PE2,... PEM−1 → PE0. Since PEs are
identical, this is just a matter of their numbering and there should be (M−1)!
permutations with (practically) equal performance. Consequently the design
space of the mapping would be actually much smaller. With heteregeneous
resources or hierarchical network this would not apply. Moving the tasks has
more complex consequences due to their dependencies.

Earlier, SA+AT has been compared to Group Migration (GM), hybrid
of SA anf GM Random, and Optimal Subset Mapping algorithm with large
300−task graphs and 2, 4, 8 PEs. [28]. In that experiment, SA+AT was the

24 Heikki Orsila et al.

Table 11 Comparing average gain and iteration count values for the normalized inverse
exponential (NIE) and normalized exponential acceptors (NE). Higher value is better in
gain and smaller in the iterations.

Mean gain Mean iterations

PEs NIE NE NIE
NE

− 1 NIE NE NIE
NE

− 1

2 1.329 1.334 −0.3% 6 758 6 882 −1.8%
3 1.566 1.576 −0.6% 13 577 14 120 −3.8%
4 1.794 1.798 −0.2% 20 734 22 398 −7.4%

best heuristic studied. The speedups w.r.t single PE were about 1.9x, 2.7x
and 3.7x, respectively, but the optimum was uknown. The relation between
mean iteration count and problem size is far from linear but we haven’t yet
formulated it. For example in this paper, 8-PE case requires about 20x itera-
tions compared to 2 PEs. However in [28], the ratio is only 2.4x and iterations
counts are rather small - 37k and 88k - considering the size of task graph.

5 On SA acceptance probability

This experiment studied the impact of acceptance function.

5.1 On acceptor functions

Normalized exponential and normalized inverse exponential acceptor functions
are compared with respect to solution quality and convergence. Very few SA
papers try different acceptor functions. We ran an experiment to compare
the normalized inverse exponential (equation 2) and normalized exponential
(equation 3) acceptor functions. Parameter selection method from [30] was ap-
plied to (equation 3). The experiment was re-run for both acceptor functions,
100 graphs, 2-4 PEs, 10 times each case, totaling 6 000 optimization runs.

Table 11 shows the average gain and iteration count results for both ac-
ceptor functions. In terms of gain, normalized exponential acceptor is better
by not more than half a percent.

However, exponential acceptor needs 2 − 7% more iterations. Both SA
algorithms have an equal number of iterations per temperature from T0 to Tf .
Optimization terminates when T ≤ Tf and L consecutive rejections happen.
Acceptance function affects the number of consecutive rejections which makes
the difference in the number of iterations. Inverse exponential acceptor has
higher rejection probability, which makes it stop earlier than an exponential
acceptor.

Furthermore, we compared brute force results with 32 nodes and 2 PEs
between normalized exponential and normalized inverse exponential acceptors.
Table 12 shows the difference between global optimum converge rates for the
two acceptors for SA+AT. Results indicate normalized exponential acceptor
(NE) converges slightly more frequently than normalized inverse exponential

Recommendations for using Simulated Annealing in task mapping 25

Table 12 The difference in SA+AT convergence rate between normalized exponential ac-
ceptor (NE) and normalized inverse exponential acceptor (NIE). Overhead percentage p
shows the convergence within global optimum. A positive value indicates normalized expo-
nential acceptor is better. SA+AT chooses L = 32.

Exec. time overhead Convergence rate difference: (NE - NIE) / NE
L value

p = t
to
− 1 16 32 64 128 256

+0% 0.001 0.003 0.006 0.007 0.009
+1% 0.003 0.006 0.008 0.003 0.011
+2% 0.001 0.009 0.014 0.009 0.006
+3% 0.003 0.010 0.016 0.015 0.015
+4% 0.004 0.011 0.016 0.012 0.015
+5% 0.006 0.014 0.021 0.011 0.010
+6% 0.011 0.014 0.025 0.012 0.013
+7% 0.011 0.016 0.028 0.010 0.003
+8% 0.011 0.015 0.030 0.006 −0.004
+9% 0.014 0.016 0.031 0.004 −0.004

+10% 0.016 0.019 0.035 0.002 −0.002
+11% 0.015 0.019 0.023 0.000 −0.002
+12% 0.013 0.014 0.015 −0.004 −0.002
+13% 0.003 0.024 0.012 −0.002 −0.001
+14% 0.002 0.020 0.007 0.001 0.000
+15% 0.001 0.019 0.006 0.000
+16% −0.001 0.015 0.004 0.000
+17% 0.002 0.013 0.002 0.000
+18% 0.001 0.009 0.002 0.000
+19% −0.002 0.006 0.002 0.001
+20% −0.004 0.001 0.002 0.000
+21% −0.004 −0.001 0.001
+22% −0.005 0.000 0.000
+23% −0.002 0.000 0.000
+24% −0.002 0.000 −0.001
+25% −0.002 0.000 0.000
+26% −0.002 0.001
+27% −0.001 0.000
+28% 0.000
+29% −0.001

.
+35% 0.000

acceptor (NIE). The SA+AT choice L = 32 displays difference of at most 2.4%
in absolute convergence rate.

We recommend using normalized exponential acceptor NE for task map-
ping.

5.2 On zero transition probability

SA acceptance function defines the probability to accept a move for a given
objective change and the temperature. Zero transition probability is the prob-
ability of accepting a move that does not change the cost. One might speculate
that although the cost does not change, the new mapping may be a better base

26 Heikki Orsila et al.

for the next moves. We studied the effect of zero transition probability to the
solution quality.

The normalized inverse exponential acceptance function (equation 2) gives
0.5 probability for zero transition, that is, when ∆C = 0. The acceptance
function was modified to test the effect of zero transition probability:

Accept(∆C, T) =
2a

1 + exp(∆C
0.5C0T

)
, (8)

where a is the probability for ∆C = 0. SA+AT was re-run for several graphs
with the setup specific in detail in [30] with distinct probabilities a ∈ [0.1, 0.2, . . . , 1.0].
Two 16 node cyclic graphs, one 128 node cyclic graph, two 16 node acyclic
graphs, and one 128 acyclic graph, all with target distribution 10%, were
tested with a 3 PE system. However, no causality was found between solution
quality and the zero transition probability. It seems that this probability is
insignificant.

6 Recommendations

In this Section we summarize our findings and give recommendations for re-
porting the results on taks mapping using simulated annealing. In addition,
we present a compact list how to set up SA for task mapping.

6.1 On reporting results

There are several guidelines that apply for publishing data on parallel com-
putation [2] and heuristics in general [3]. Unfortunately, we found out that
many of the cited publications leave out important details to reproduce the
results with SA. Therefore, we present recommendations for publishing results
on task mapping with SA as follows:

1. Report at least the pseudocode of the algorithm. A textual description
of the algorithm is often too ambiguous for reproducing the experiment.
Specify the temperature scale, cost, move, and acceptance functions.

2. Report numerical values for constants for the algorithm. Specify tem-
perature scaling factor, initial and final temperatures and the number of
iterations per temperature level. These are needed to re-produce the same
results.

3. Report the convergence rate. Plot the number of mapping iterations
against optimized values (e.g. speedup). Report mean and median number
of iterations.

4. Compare the result from heuristics with a global optimum result for a
trivial problem that can be solved by brute force. Report the proportion of
optimization runs and the number of iterations that reach within p percent
of the global optimum where p is varied. For example, it can be informative

Recommendations for using Simulated Annealing in task mapping 27

to know that p = 95 percent of optimization runs yield a result that is only
5 percent worse than the global optimum and uses a specific number of
iterations on average for this result.

5. Report the optimization time per iteration. This corresponds mostly
to simulation time per mapping.

6.2 Recommended practices for task mapping with Simulated Annealing

Based on existing data and results, we recommend following practices for task
mapping with SA:

1. Scale the number of iterations per temperature level with system
size. That means that L should be proportional to α = N(M − 1), where
N is the number of tasks and M is the number of PEs. α is the number of
neighboring mapping solutions. Section 4 results and [26] [30] [6] indicate
that α times a small multiplier is sufficient for good convergence provided
that SA is repeated several times.
Furthermore, as a generic result it is important to note that the number
of mapping iterations should grow as a function of problem complexity
parameters N and M unless experimental results indicate good results for
a specific L value.

2. Use geometric temperature schedule with 0.90 ≤ q ≤ 0.99. Most
known results use values in this range. Our experiments have found q =
0.95 to be a suitable value. The L value has to be adjusted with the q
variable. Dropping q from 0.95 to 0.90 implies that the number of iterations
in a given temperature range halves unless L is doubled.

3. Use a systematic method for choosing the initial and final tem-
peratures, e.g. one published in [26] [29] [30] [5] [4] [6] [10] [18] [22] [38].
A systematic method decreases manual work and the risk of careless pa-
rameter selection. A systematic method may also decrease optimization
time.

4. Use a normalized exponential acceptance function (NE) (equation 3).
Section 5 indicates that using exponential rather than inverse exponential
acceptance function is preferred. The zero transition probability did not
explain why inverse exponential did worse. Normalized acceptance func-
tion is defined with a normalized temperature range T ∈ (0, 1] which
makes annealing schedules more comparable between problems. It is easy
to select a safe but wasteful range when temperature is normalized, e.g.
T ∈ (0.0001, 1]. It is also easier to add new influencing factors into the cost
function since the initial cost does not directly affect the selection of initial
temperature when a normalized acceptance function is used. Instead, the
relative change in cost function value in moves is a factor in the selection
of initial temperature.

5. Use the ST (single task) move function 3.1, if in doubt. It is the most
common heuristics which makes also the comparison easier to other works.
However, exploring the impact of move function calls for more research.

28 Heikki Orsila et al.

6. Run the heuristics several times for a given problem. Section 4 shows
that repetition, that is, restarting optimization, is necessary. The variance
of solution quality can be significant which comes visible by running the
heuristics several times. SA terminates usually in a low temperature state
in a neighborhood of a local minimum. We call this neighborhood a valley.
It is hard to escape from a valley when the temperature is low. Running SA
several times increases the probability that better valleys are found in the
optimization process. Increasing the number of iterations per optimization
run may not address this because the algorithm will most likely end up in
a single valley. Multiple valleys should be explored.

7. Record the iteration number when the best solution is reached.
Some algorithms continue running but make no further progress at the end
of optimization. If the termination iteration number is much higher than
the best solution iteration number, maybe the annealing can be stopped
earlier without sacrificing quality.

7 Conclusion

A survey of state-of-the-art of task mapping with SA was presented. It was
found out that SA parameters are often incompletely presented and explained
in publications. Recommendations were presented on how to better report this
information. Despite SA is an efficient optimization method for task mapping,
there are many practices for selecting the SA parameters. Based on our exper-
iments and findings, we presented a set of recommended parameters in detail
to help researchers reproduce and compare their works. Thorough experiments
with 2− 8 PEs and 11− 32 tasks showed that SA can achieve solutions very
close to globally optimum and also 4-6 orders of magnitude reduction in opti-
mization time. Our future work includes adding memory and time constraints
to the objective function, evaluate applicability to larger problems, and to
further automate the task mapping process as whole.

References

1. Ali, S., Kim, J.-K., Siegel, H. J. and Maciejewski, A. A., “Static heuristics for robust
resource allocation of continuously executing applications”, Journal of Parallel and Dis-
tributed Computing, Vol. 68, Issue 8, August 2008, pp. 1070-1080, ISSN 0743-7315,
DOI: 10.1016/j.jpdc.2007.12.007.

2. Bailey, D. H., “Twelve ways to fool the masses when giving performance results on
parallel computers”, Supercomputer Review, Vol. 4, No. 8, pp. 54-55, 1991. [online]
http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf

3. Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C. and Stewart, W. R, “Design-
ing and Reporting on Computational Experiments with heuristic Methods”, Springer
Journal of Heuristics, Vol. 1, No. 1, pp. 9-32, 1995.

4. Bollinger, S. W. and Midkiff, S. F., “Heuristic Technique for Processor and Link As-
signment in Multicomputers”, IEEE Transactions on Computers, Vol. 40, pp. 325-333,
1991.

http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf

Recommendations for using Simulated Annealing in task mapping 29

5. Braun, T. D., Siegel, H. J. and Beck, N., “A Comparison of Eleven Static Heuristics for
Mapping a Class if Independent Tasks onto Heterogeneous Distributed Systems”, IEEE
Journal of Parallel and Distributed Computing, Vol. 61, pp. 810-837, 2001.

6. Coroyer, C. and Liu, Z., “Effectiveness of heuristics and simulated annealing for the
scheduling of concurrent tasks an empirical comparison”, Rapport de recherche de
l’INRIA Sophia Antipolis (1379), 1991.

7. DCS task mapper, “a task mapping and scheduling tool for multiprocessor systems”,
2010. [online] http://wiki.tut.fi/DACI/DCSTaskMapper

8. This paper’s experiment data files, 2012. [online] http://zakalwe.fi/~shd/

task-mapping/experiment-data-2012-11.tar.gz
9. Dorigo, M. and Stützle, T., “Ant Colony Optimization”, MIT press, ISBN 0-262-04219-

3, 2004.
10. Ercal, F., Ramanujam, J. and Sadayappan, P., “Task Allocation onto a Hypercube by

Recursive Mincut Bipartitioning”, ACM, pp. 210-221, 1988. [online] http://dl.acm.

org/citation.cfm?id=62323
11. Ferrandi, F., Pilato, C., Sciuto, D. and Tumeo, A., “Mapping and scheduling of parallel

C applications with Ant Colony Optimization onto heterogeneous reconfigurable MP-
SoCs”, Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific,
pp. 799-804, 2010.

12. Girkar, M. and Polychronopoulos, C. D., “Automatic extraction of functional parallelism
from ordinary programs”, IEEE Transactions on Parallel and Distributed Systems, Vol.
3, No. 2, pp. 166-178, March 1992.

13. M. Gries, Methods for evaluating and covering the design space during early design
development, Integration, the VLSI Journal, Vol. 38, Issue 2, pp. 131-183, 2004.

14. jobqueue, “A tool for parallelizing jobs to a cluster of computers”, 2010. [online] http:
//zakalwe.fi/~shd/foss/jobqueue/

15. Kahn, G., “The semantics of a simple language for parallel programming”, Proceedings
of IFIP Congress 74, Information Processing 74, pp. 471-475, 1974. [online] http://

www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
16. Kim, J.-K., Shivle, S., Siegel, H. J., Maciejewski, A. A., Braun, T. D., Schneider, M.,

Tideman, S., Chitta, R., Dilmaghani, R. B., Joshi, R., Kaul, A., Sharma, A., Sripada,
S., Vangari, P. and Yellampalli, S. S., “Dynamically mapping tasks with priorities and
multiple deadlines in a heterogeneous environment”, Journal of Parallel and Distributed
Computing, Elsevier, Vol. 67, pp. 154-169, 2007.

17. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., “Optimization by simulated annealing”,
Science, Vol. 200, No. 4598, pp. 671-680, 1983.

18. Koch, P., “Strategies for Realistic and Efficient Static Scheduling of Data Independent
Algorithms onto Multiple Digital Signal Processors”, Doctoral thesis, The DSP Re-
search Group, Institute for Electronic Systems, Aalborg University, Aalborg, Denmark,
December 1995.

19. kpn-generator, “A program for generating random Kahn Process Network graphs”, 2009.
[online] http://zakalwe.fi/~shd/foss/kpn-generator/

20. Kwok, Y.-K., Ahmad, I. and Gu, J., “FAST: A Low-Complexity Algorithm for Efficient
Scheduling of DAGs on Parallel Processors”, Proceedings of International Conference
on Parallel Processing, Vol. II, pp. 150-157, 1996.

21. Kwok, Y.-K. and Ahmad, I., “FASTEST: A Practical Low-Complexity Algorithm for
Compile-Time Assignment of Parallel Programs to Multiprocessors”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 10, No. 2, pp. 147-159, 1999.

22. Lin, F.-T. and Hsu, C.-C., “Task Assignment Scheduling by Simulated Annealing”,
IEEE Region 10 Conference on Computer and Communication Systems, Hong Kong,
September 1990.

23. Matousek, J. and Gärtner, B., “Understanding and Using Linear Programming”,
Springer, ISBN 978-3540306979, 2006.

24. Nanda, A. K., DeGroot, D. and Stenger, D. L., “Scheduling Directed Task Graphs on
Multiprocessors using Simulated Annealing”, Proceedings of 12th IEEE International
Conference on Distributed Systems, pp. 20-27, 1992.

25. H. Orsila, “Optimizing Algorithms for Task Graph Mapping on Multiprocessor System
on Chip”, Doctoral thesis, Tampere University of Technology, Department of Computer
Systems, 2011. [Online] http://dspace.cc.tut.fi/dpub/handle/123456789/20519

http://wiki.tut.fi/DACI/DCSTaskMapper
http://zakalwe.fi/~shd/task-mapping/experiment-data-2012-11.tar.gz
http://zakalwe.fi/~shd/task-mapping/experiment-data-2012-11.tar.gz
http://dl.acm.org/citation.cfm?id=62323
http://dl.acm.org/citation.cfm?id=62323
http://zakalwe.fi/~shd/foss/jobqueue/
http://zakalwe.fi/~shd/foss/jobqueue/
http://www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
http://www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
http://zakalwe.fi/~shd/foss/kpn-generator/
http://dspace.cc.tut.fi/dpub/handle/123456789/20519

30 Heikki Orsila et al.

26. H. Orsila, T. Kangas, E. Salminen, T. D. Hämäläinen, Parameterizing Simulated An-
nealing for Distributing Task Graphs on multiprocessor SoCs, International Symposium
on System-on-Chip, pp. 73-76, Tampere, Finland, Nov 14-16, 2006.

27. H. Orsila, T. Kangas, E. Salminen, M. Hännikäinen, T. D. Hämäläinen, Automated
Memory-Aware Application Distribution for Multi-Processor System-On-Chips, Jour-
nal of Systems Architecture, Volume 53, Issue 11, ISSN 1383-7621, pp. 795-815, 2007.

28. H. Orsila, E. Salminen, M. Hännikäinen, T. D. Hämäläinen, Optimal Subset Mapping
And Convergence Evaluation of Mapping Algorithms for Distributing Task Graphs on
Multiprocessor SoC, International Symposium on System-on-Chip, Tampere, Finland,
Nov 19-21, 2007.

29. H. Orsila, E. Salminen, T. D. Hämäläinen, Best Practices for Simulated Annealing in
Multiprocessor Task Distribution Problems, Chapter 16 of the Book “Simulated An-
nealing”, ISBN 978-953-7619-07-7, I-Tech Education and Publishing KG, pp. 321-342,
2008.

30. H. Orsila, E. Salminen, T. D. Hämäläinen, Parameterizing Simulated Annealing for
Distributing Kahn Process Networks on Multiprocessor SoCs, International Symposium
on System-on-Chip 2009, Tampere, Finland, Oct 5-7, 2009.

31. Ravindran, K., “Task Allocation and Scheduling of Concurrent Applications to Multi-
processor Systems”, Doctoral thesis, UCB/EECS-2007-149, 2007. [online] http://www.
eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-149.html

32. SA+AT C reference implementation. [online] http://zakalwe.fi/~shd/task-mapping
33. Sato, M., “OpenMP: parallel programming API for shared memory multiprocessors and

on-chip multiprocessors”, ACM, Proceedings of the 15th international symposium on
System Synthesis, pp. 109-111, 2002.

34. Sih, G. C. and Lee, E. A., “A Compile-Time Scheduling Heuristics for Interconnection-
Constrained Heterogeneous Processor Architectures”, IEEE Transaction on Parallel and
Distributed Systems, Vol. 4, No. 2, pp. 175-187, 1993.

35. Singh, A. K., Srikanthan, T., Kumar, A. and Jigang, W., “Communication-aware heuris-
tics for run-time task mapping on NoC-based MPSoC platforms”, Elsevier, Journal of
Systems Architecture, Vol. 56, pp. 242-255, 2010. [online] http://www.es.ele.tue.nl/

~akash/files/kumarJSA2010b.pdf

36. Wild, T., Brunnbauer, W., Foag, J. and Pazos, N., ”Mapping and scheduling for archi-
tecture exploration of networking SoCs”, Proc. 16th Int. Conference on VLSI Design,
pp. 376-381, 2003.

37. W. Wolf, The future of multiprocessor systems-on-chips, Design Automation Conference
2004, pp. 681-685, 2004.

38. Xu, J. and Hwang, K., “A simulated annealing method for mapping production systems
onto multicomputers”, Proceedings of the sixth conference on Artificial intelligence ap-
plications, IEEE Press, ISBN 0-8186-2032-3, pp. 130-136, 1990.

8 Appendix: Convergence results to larger systems with 3-6 PEs

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-149.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-149.html
http://zakalwe.fi/~shd/task-mapping
http://www.es.ele.tue.nl/~akash/files/kumarJSA2010b.pdf
http://www.es.ele.tue.nl/~akash/files/kumarJSA2010b.pdf

Recommendations for using Simulated Annealing in task mapping 31

Table 13 Proportion of SA+AT runs that converged within p from global optimum for
3 PEs and 21 nodes. A higher value is better. SA+AT chooses L = 42. The 90% level is
marked in boldface on each column.

Proportion of runs within limit p
L value

p = t
to
− 1 16 32 42 64 128 256 512

+0% 0.003 0.011 0.012 0.027 0.054 0.110 0.203
+1% 0.007 0.028 0.036 0.068 0.128 0.229 0.369
+2% 0.015 0.056 0.070 0.125 0.232 0.352 0.509
+3% 0.031 0.093 0.120 0.195 0.328 0.460 0.612
+4% 0.044 0.128 0.162 0.249 0.407 0.557 0.713
+5% 0.062 0.170 0.213 0.318 0.494 0.663 0.810
+6% 0.083 0.214 0.273 0.393 0.593 0.774 0.901
+7% 0.112 0.271 0.339 0.475 0.682 0.857 0.951
+8% 0.141 0.321 0.398 0.543 0.750 0.905 0.977
+9% 0.177 0.378 0.464 0.618 0.809 0.940 0.989

+10% 0.215 0.438 0.529 0.685 0.862 0.964 0.996
+11% 0.259 0.502 0.597 0.746 0.905 0.983 0.999
+12% 0.304 0.563 0.660 0.801 0.939 0.993 1.000
+13% 0.354 0.626 0.718 0.849 0.963 0.997
+14% 0.404 0.686 0.769 0.887 0.977 0.998
+15% 0.453 0.740 0.815 0.918 0.986 0.999
+16% 0.510 0.785 0.857 0.942 0.993 1.000
+17% 0.564 0.828 0.890 0.962 0.996
+18% 0.617 0.866 0.918 0.974 0.998
+19% 0.668 0.896 0.939 0.983 1.000
+20% 0.714 0.922 0.957 0.989
+21% 0.761 0.945 0.970 0.994
+22% 0.801 0.961 0.979 0.996
+23% 0.836 0.972 0.986 0.998
+24% 0.868 0.982 0.990 0.999
+25% 0.897 0.987 0.995 0.999
+26% 0.920 0.991 0.997 1.000
+27% 0.939 0.995 0.998
+28% 0.954 0.997 0.999
+29% 0.965 0.998 0.999
+30% 0.975 0.999 1.000
+31% 0.982 0.999
+32% 0.987 1.000

.
+39% 1.000

+mean mappings 727 1 545 2 127 3 725 19 144 113 848 229 258
+median mappings 692 1 477 2 050 3 601 15 678 114 428 228 860

32 Heikki Orsila et al.

Table 14 Approximate expected number of mappings for SA+AT with 3 PEs and 21 nodes.
SA+AT chooses L = 42. The best values (smallest) are in boldface for each performance
level p (row).

Estimated number of mappings
L value

p 16 32 42 64 128 256 512

+0% 250 856 145 775 178 520 138 977 354 527 1 032 163 1 131 020
+1% 102 462 55 583 58 607 54 693 149 333 498 021 621 969
+2% 47 548 27 593 30 392 29 702 82 555 323 063 450 055
+3% 23 774 16 615 17 684 19 081 58 421 247 548 374 911
+4% 16 459 12 100 13 165 14 958 47 015 204 541 321 630
+5% 11 677 9 095 9 979 11 720 38 730 171 819 283 069
+6% 8 775 7 234 7 781 9 475 32 262 147 014 254 533
+7% 6 501 5 712 6 279 7 845 28 050 132 922 241 070
+8% 5 178 4 812 5 345 6 858 25 533 125 729 234 607
+9% 4 105 4 091 4 583 6 028 23 656 121 114 231 902

+10% 3 385 3 531 4 022 5 433 22 204 118 050 230 248
+11% 2 804 3 078 3 564 4 992 21 147 115 828 229 556
+12% 2 394 2 744 3 225 4 651 20 399 114 650 229 304
+13% 2 054 2468 2 965 4 388 19 888 114 190 229 258
+14% 1 803 2 254 2 766 4 199 19 595 114 041
+15% 1 606 2 088 2 611 4 056 19 412 113 939
+16% 1 427 1 967 2 482 3 953 19 287 113 870
+17% 1 290 1 866 2 390 3 873 19 221 113 848
+18% 1 179 1 785 2 317 3 824 19 181
+19% 1 089 1 725 2 265 3 787 19 154
+20% 1 018 1 676 2 223 3 767 19 150
+21% 955 1 635 2 193 3 748 19 148
+22% 908 1 609 2 173 3 740 19 144
+23% 870 1 590 2 158 3 733
+24% 838 1 574 2 149 3 729
+25% 811 1 566 2 139 3 727
+26% 790 1 560 2 134 3 725
+27% 775 1 553 2 131 3 725
+28% 763 1 550 2 130
+29% 754 1 548 2 129
+30% 746 1 547 2 128
+31% 741 1 546 2 128
+32% 737 1 546 2 127
+33% 734 1 546
+34% 731 1 545
+35% 730 1 545

.
+42% 727

mean 727 1 545 2 127 3 725 19 144 113 848 229 258
median 692 1 477 2 050 3 601 15 678 114 428 228 860

Recommendations for using Simulated Annealing in task mapping 33

Table 15 Proportion of SA+AT runs that converged within p from global optimum for 4
PEs and 17 nodes. A higher value is better. SA+AT chooses L = 51.

Proportion of runs within limit p
L value

p = t
to
− 1 16 32 51 64 128 256 512

+0% 0.011 0.042 0.090 0.110 0.198 0.305 0.460
+1% 0.013 0.049 0.104 0.126 0.220 0.334 0.495
+2% 0.017 0.056 0.116 0.139 0.243 0.371 0.545
+3% 0.025 0.081 0.156 0.186 0.321 0.469 0.641
+4% 0.036 0.114 0.207 0.253 0.407 0.558 0.719
+5% 0.046 0.146 0.260 0.317 0.484 0.653 0.813
+6% 0.060 0.183 0.310 0.371 0.559 0.731 0.874
+7% 0.084 0.229 0.372 0.433 0.629 0.786 0.904
+8% 0.110 0.279 0.440 0.509 0.705 0.853 0.955
+9% 0.137 0.325 0.497 0.565 0.755 0.890 0.970

+10% 0.171 0.381 0.565 0.631 0.816 0.930 0.987
+11% 0.206 0.429 0.612 0.680 0.852 0.945 0.990
+12% 0.244 0.487 0.669 0.736 0.889 0.964 0.995
+13% 0.291 0.544 0.727 0.791 0.920 0.976 0.997
+14% 0.337 0.600 0.780 0.837 0.945 0.986 0.999
+15% 0.390 0.656 0.823 0.872 0.962 0.992 1.000
+16% 0.445 0.706 0.858 0.900 0.972 0.995
+17% 0.495 0.749 0.885 0.922 0.980 0.997
+18% 0.546 0.791 0.907 0.940 0.984 0.998
+19% 0.594 0.824 0.927 0.953 0.989 0.999
+20% 0.643 0.852 0.939 0.963 0.993 0.999
+21% 0.687 0.878 0.952 0.971 0.994 0.999
+22% 0.722 0.897 0.962 0.977 0.996 0.999
+23% 0.757 0.915 0.970 0.982 0.997 1.000
+24% 0.789 0.929 0.977 0.986 0.998
+25% 0.816 0.942 0.983 0.990 0.998
+26% 0.843 0.953 0.988 0.993 0.999
+27% 0.870 0.963 0.992 0.995 0.999
+28% 0.889 0.971 0.995 0.996 1.000
+29% 0.905 0.978 0.995 0.998
+30% 0.917 0.982 0.996 0.998
+31% 0.931 0.987 0.997 0.999
+32% 0.942 0.990 0.998 0.999
+33% 0.951 0.992 0.999 1.000
+34% 0.959 0.994 0.999
+35% 0.965 0.996 1.000
+36% 0.969 0.996
+37% 0.975 0.997
+38% 0.980 0.999
+39% 0.983 0.999
+40% 0.986 0.999
+41% 0.989 1.000

.
+51% 1.000

mean mappings 786 1 703 3 146 4 549 38 332 115 650 231 412
median mappings 809 1 727 3 066 4 275 39 694 115 705 231 417

34 Heikki Orsila et al.

Table 16 Approximate expected number of mappings for SA+AT with 4 PEs and 17 nodes.
SA+AT chooses L = 51.

Estimated number of mappings
L value

p 16 32 51 64 128 256 512

+0% 68 921 40 261 34 875 41 541 194 089 378 933 502 960
+1% 62 357 34 970 30 306 36 187 174 080 346 674 467 027
+2% 46 768 30 196 27 119 32 725 157 747 311 558 424 609
+3% 30 933 21 104 20 165 24 403 119 490 246 642 361 130
+4% 21 947 14 979 15 168 17 986 94 229 207 296 321 987
+5% 16 933 11 641 12 113 14 358 79 150 177 025 284 569
+6% 12 987 9 317 10 144 12 267 68 598 158 208 264 743
+7% 9 354 7 424 8 452 10 495 60 932 147 194 255 845
+8% 7 136 6 115 7 156 8 933 54 357 135 597 242 215
+9% 5 727 5 242 6 329 8 051 50 778 129 959 238 667

+10% 4 589 4 476 5 572 7 208 46 953 124 395 234 484
+11% 3 810 3 973 5 142 6 693 44 975 122 420 233 679
+12% 3 223 3 498 4 704 6 183 43 109 119 957 232 505
+13% 2 703 3 128 4 326 5 751 41 684 118 482 232 015
+14% 2 334 2 841 4 035 5 437 40 585 117 340 231 667
+15% 2 013 2 594 3 824 5 218 39 863 116 618 231 505
+16% 1 764 2 413 3 667 5 054 39 441 116 208 231 435
+17% 1 588 2 275 3 554 4 931 39 111 115 975 231 412
+18% 1 439 2 154 3 467 4 841 38 944 115 847
+19% 1 323 2 067 3 394 4 775 38 771 115 801
+20% 1 222 2 000 3 349 4 722 38 622 115 778
+21% 1 144 1 939 3 305 4 687 38 556 115 743
+22% 1 088 1 899 3 270 4 654 38 502 115 720
+23% 1 038 1 861 3 242 4 630 38 459 115 662
+24% 996 1 833 3 219 4 611 38 413 115 650
+25% 963 1 808 3 200 4 596 38 394
+26% 932 1 787 3 183 4 583 38 371
+27% 903 1 769 3 170 4 572 38 355
+28% 884 1 754 3 163 4 566 38 332
+29% 868 1 742 3 160 4 560
+30% 857 1 734 3 158 4 557
+31% 844 1 726 3 154 4 554
+32% 834 1 721 3 151 4 552
+33% 826 1 717 3 149 4 550
+34% 820 1 713 3 148 4 549
+35% 814 1 711 3 146 4 549
+36% 811 1 710 3 146 4 549
+37% 806 1 707 3 146
+38% 802 1 706 3 146
+39% 799 1 705 3 146
+40% 797 1 705 3 146
+41% 794 1 704 3 146
+42% 792 1 704 3 146
+43% 790 1 703 3 146
+44% 789 1 703
+45% 788 1 703
+46% 787

.
+57% 786

mean 786 1 703 3 146 4 549 38 332 115 650 231 412
median 809 1 727 3 066 4 275 39 694 115 705 231 417

Recommendations for using Simulated Annealing in task mapping 35

Table 17 Proportion of SA+AT runs that converged within p from global optimum for 6
PEs and 13 nodes. A higher value is better. SA+AT chooses L = 65.

Proportion of runs within limit p
L value

p = t
to
− 1 16 32 64 65 128 256 512

+0% 0.086 0.325 0.576 0.578 0.731 0.869 0.941
+1% 0.184 0.448 0.666 0.662 0.784 0.897 0.962
+2% 0.206 0.471 0.692 0.684 0.810 0.919 0.972
+3% 0.249 0.548 0.767 0.758 0.861 0.943 0.982
+4% 0.292 0.596 0.793 0.782 0.872 0.949 0.986
+5% 0.325 0.638 0.825 0.818 0.900 0.962 0.990
+6% 0.374 0.689 0.852 0.846 0.915 0.968 0.993
+7% 0.434 0.751 0.907 0.908 0.967 0.993 0.999
+8% 0.484 0.785 0.920 0.921 0.974 0.995 1.000
+9% 0.533 0.816 0.936 0.938 0.982 0.997

+10% 0.605 0.868 0.965 0.963 0.993 0.999
+11% 0.646 0.886 0.970 0.968 0.995 0.999
+12% 0.685 0.907 0.977 0.976 0.996 1.000
+13% 0.728 0.929 0.985 0.986 0.998
+14% 0.768 0.951 0.994 0.995 1.000
+15% 0.812 0.967 0.997 0.999
+16% 0.858 0.980 0.998 0.999
+17% 0.888 0.987 0.999 1.000
+18% 0.912 0.991 0.999
+19% 0.937 0.995 0.999
+20% 0.960 0.998 1.000
+21% 0.969 0.999
+22% 0.977 1.000

.
+32% 1.000

mean mappings 768 1 983 8 271 8 662 55 426 115 705 231 417
median mappings 752 1 802 6 425 6 679 57 858 115 880 231 688

36 Heikki Orsila et al.

Table 18 Approximate expected number of mappings for SA+AT with 6 PEs and 13 nodes.
SA+AT chooses L = 65.

Estimated number of mappings
L value

p 16 32 64 65 128 256 512

+0% 8 976 6 094 14 372 14 981 75 854 133 208 246 057
+1% 4 174 4 426 12 417 13 077 70 688 128 991 240 458
+2% 3 732 4 213 11 954 12 656 68 385 125 944 238 132
+3% 3 086 3 618 10 781 11 425 64 345 122 751 235 755
+4% 2 628 3 329 10 434 11 075 63 555 121 871 234 655
+5% 2 366 3 107 10 020 10 596 61 571 120 313 233 801
+6% 2 054 2 877 9 704 10 235 60 562 119 493 233 142
+7% 1 770 2 641 9 118 9 543 57 324 116 544 231 556
+8% 1 588 2 526 8 992 9 409 56 929 116 321 231 440
+9% 1 440 2 431 8 838 9 231 56 442 116 053 231 417

+10% 1 270 2 283 8 573 8 993 55 800 115 878
+11% 1 190 2 238 8 527 8 945 55 716 115 774
+12% 1 121 2 187 8 470 8 871 55 638 115 763
+13% 1 056 2 135 8 398 8 785 55 543 115 728
+14% 1 000 2 085 8 324 8 706 55 437 115 705
+15% 946 2 051 8 292 8 675 55 426
+16% 895 2 023 8 285 8 667
+17% 865 2 009 8 279 8 666
+18% 843 2 002 8 277 8 666
+19% 820 1 994 8 277 8 665
+20% 800 1 986 8 272 8 663
+21% 793 1 985 8 271 8 663
+22% 786 1 984 8 662
+23% 781 1 983
+24% 777 1 983
+25% 775 1 983

.
+34% 768

mean 768 1 983 8 271 8 662 55 426 115 705 231 417
median 752 1 802 6 425 6 679 57 858 115 880 231 688

	Introduction
	Related work
	SA parameters
	On global optimum results
	On SA acceptance probability
	Recommendations
	Conclusion
	Appendix: Convergence results to larger systems with 3-6 PEs

