
Evaluation of Heterogeneous Multiprocessor
Architectures by Energy and Performance

Optimization
Heikki Orsila, Erno Salminen, Marko Ḧannik̈ainen, Timo D. Ḧamäläinen

Department of Computer Systems
Tampere University of Technology

P.O. Box 553, 33101 Tampere, Finland
Email: {heikki.orsila, erno.salminen, marko.hannikainen, timo.d.hamalainen}@tut.fi

Abstract— Design space exploration aims to find an energy-
efficient architecture with high performance. A trade-off is
needed between these goals, and the optimization effort should
also be minimized. In this paper, we evaluate heterogeneous
multiprocessor architectures by optimizing both energy and
performance for applications. Ten random task graphs are
optimized for each architecture, and evaluated with simulations.
The energy versus performance trade-off is analyzed by looking
at Pareto optimal solutions. It is assumed that there is a
variety of processing elements whose number, frequency and
microarchitecture can be modified for exploration purposes. It
is found that both energy-efficient and well performing solutions
exist, and in general, performance is traded for energy-efficiency.
Results indicate that automated exploration tools are needed
when the complexity of the mapping problem grows, starting
already with our experiment setup: 6 types of PEs to select from,
and the system consists of2 to 5 PEs. Our results indicate that our
Simulated Annealing method can be used for energy optimization
with heterogeneous architectures, in addition to performance
optimization with homogeneous architectures.

I. I NTRODUCTION

An efficient multiprocessor SoC (MPSoC) implementation
requires automated exploration to find an efficient HW al-
location, task mapping and scheduling [1]. Heterogeneous
MPSoCs are needed for low power, high performance, and
high volume markets [2]. The central idea in multiprocessing
SoCs is to increase performance while decreasing energy
consumption. This is achieved by efficient communication
between cores and keeping clock frequency low.

Mapping means placing each application component to
some processing element (PE). Scheduling means determining
execution order of the application components on the platform.
A large design space must be pruned systematically, since
the exploration of the whole design space is not feasible
[1]. Fast optimization procedure is desired in order to cover
reasonable design space. However, this comes with the ex-
pense of accuracy. Iterative optimization algorithms evaluate
a number of application mappings for each resource allocation
candidate. For each mapping, the application is scheduled
and simulated to evaluate the cost of the solution, i.e. the
value of the objective function. The objective function may
consider multiple parameters, such as execution time, commu-

nication time, memory, energy consumption and silicon area
constraints. Figure 1(a) shows the mapping process.

We present an experiment where a set of hardware archi-
tectures is generated by random, and applications are mapped
on them. Hardware architectures are2 to 5 PE systems
with both singlescalar and superscalar PEs with frequencies
from 100MHz to 300MHz. The total area of the system is
limited to 8mm2. Applications are300 node acyclic static
task graphs (STGs) [3]. Figure 1(b) shows the application,
its mapping, and the hardware platform. The application is
optimized for each architecture with respect to the energy for
that is consumed when the application is run. Resulting energy
and execution time values for each architecture are analyzed
to find Pareto optimal architectures. Hence, applications are
optimized with a single objective (energy), but architectures
are analyzed by two objectives.

With the constraints of our experiment, the results show
there is a clear trade-off for energy and performance. Low
number of PEs means weak performance, but low power. High
number of PEs means more performance, but loses energy-
efficiency. Also, increasing number of PEs creates demand for
automated exploration tools, as the mapping problem becomes
more important and increasingly harder.

II. RELATED WORK

Our earlier work [4] evaluated various mapping algorithms
to determine optimization convergence rate when application
performance was maximized. This paper adds heterogeneous
PEs to the problem. Simulated annealing (SA) was found to
be an efficient algorithm, and therefore, it is used also in
this paper. SA is a probabilistic non-greedy algorithm [5]
that explores search space of a problem by annealing from
a high to a low temperature state. These methods are also
used in our Koski flow [6]. Koski is a high-level design tool
for multiprocessor SoCs and applications. Koski utilizes Kahn
Process Networks [7] for application modeling.

Application

Mapping

HW Platform
Initial

solution

Simulation Solution

Cost evaluation

(a) Optimization process. Boxes indicate data. Ellipses
indicate operations. This chapter focuses on the map-
ping part.

Mapping

Application

(task graph)

PE PE PE PE

T

T

T

T

HW platform

Communication network

(b) An example MPSoC that is optimized. The system consists of the
application and the HW platform. T denotes a task, and PE denotes a
processing element.

Fig. 1. Diagram of the optimization process and the system that is optimized

III. E XPERIMENT SETUP

A. Objective And Optimization Algorithm

An experiment was done to investigate trade-offs between
energy and application performance. The objective function (1)
is to minimize the total energy consumption (static + dynamic).
The energy is measured in relative values. It is not a physical
energy unit.

E = T (Ps + Pd) = T (

N∑

i=1

Aifmax + k

N∑

i=1

AifiUi) (1)

whereT is the execution time of the application, determined
in simulation.N is the number of PEs,Ai is the area of PE
i and fi is its frequency.fmax is the maximum frequency
of any PE or interconnect, which is at least200MHz in this
experiment because the bus operates at200MHz. Utilization
Ui is the proportion of non-idle cycles of the PEi. The HW
architecture defines valuesAi and fi whereas the mapping
indirectly definesT and valuesUi.

Coefficient k is the factor that changes the relative pro-
portion of static versus dynamic energy. Energy values are

comparable whenk value is constant. The effect of dynamic
power can be eliminated by settingk = 0. The static power
part Ps of the objective function depends on the number of
transistors (relative toA) and their speed (relative tofmax).
The dynamic power partPd depends on total capacitance
(relative toA), switching frequencyfi, and activityUi. Supply
voltage is assumed fixed.

Simulated annealing algorithm was used to optimize en-
ergy (1) by changing application mappings. The algorithm is
specified in [8], but modified in two ways. First, the objective
function is the application energy on a given platform. Second,
the algorithm is run twice for each solution, and the second run
always starts from the best solution of the first run. This was
done to increase confidence in results, as the SA is stochastic.
SA temperature margin value2 was used to scale initial and
final temperatures [4].

B. Simulated HW Platform

The simulated SoC platform for the experiment is a message
passing system where each PE has some local memory, but
no shared memory. The system is simulated on the behavior
level. Each PE and interconnection resource is available for
a single action at a time. PE task context switch overhead is
0 cycles, but bus arbitration time is8 cycles for each transfer.

Figure 1(b) presents simulated HW platform. PEs are in-
terconnected with two shared buses that are independently
and dynamically arbitrated. The shared buses limit SoC per-
formance due to contention, latency and throughput. Bus
frequency is200MHz for both buses and they are32 bits wide.
The bus silicon area is0.1mm2 per processor. Each node in the
task graph sends a specific number of bytes after computation,
thus creating contention on the shared buses. Which ever bus
is free at a time is used for communication by using FIFO
arbitration, i.e. which ever PE comes first gets the bus.

Table I shows different types of PEs, each presented with
a letter. Multiprocessor architectures were varied using these
PEs. An architecture consists of2 to 5 PEs, and the total
area has8mm2 upper-bound. Architectures are presented with
fingerprint codes from these letters. Parameterp is the average
number of instructions per cycle. Frequencyf has3 values:
100MHz, 200MHz and300MHz. Processor speed is measured
in millions of operations per second, which equalsp ∗ f . A is
the area in square millimeters. Each PE can be implemented
as a singlescalar or as a superscalar version. The superscalar
version can executep = 1.8 instructions per clock. The
singlescalar version has areaA = 1mm2, superscalar has
A = 2mm2. 2 values ofp and3 values off implies6 different
PEs. A task graph node ofn cycles can be computed inn

fp

time.

C. Architecture Fingerprinting

Architecture fingerprintingis used to present results. An
architecture is characterized by a series of letters from A to F.
Letters are labels for different PEs specified in Table I. Letters
are assigned in the order of increasing number of operations
per second. Letter A is assigned for the slowest PE, and letter F

TABLE I

AVAILABLE PROCESSOR TYPES

PE type f (MHz) p (Ops

cycle
) Speed (MOps

s
) A (mm2)

A 100 1.0 100 1
B 100 1.8 180 2
C 200 1.0 200 1
D 300 1.0 300 1
E 200 1.8 360 2
F 300 1.8 540 2

TABLE II

PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE

WAS IN THE EXPERIMENT’ S 141 FINGERPRINTS. TABLE VALUES ARE

EXPLAINED IN SECTION III-D.

PE 1 PE 2 PEs 3 PEs 4 PEs 5 PEs PE prop.
type (%) (%) (%) (%) (%) (%)

A 28.4 10.6 2.8 0.7 0.7 43.3
B 28.4 7.1 1.4 0.0 0.0 36.9
C 30.5 9.2 4.3 1.4 0.7 46.1
D 31.9 8.5 5.7 1.4 0.7 48.2
E 31.9 10.6 2.1 0.0 0.0 44.7
F 29.1 9.2 1.4 0.0 0.0 39.7
Any 0.0 14.2 27.7 33.3 24.8

is assigned for the fastest PE. Each PE in the architecture gets
a single letter in the architecture fingerprint. The lettersare
organized into alphabetical order to facilitate human brain’s
pattern recognition, i.e. make it easier to see slow, fast and
same type of PEs. For example, AAB fingerprint means a
three PE architecture with two PEs of type A and one PE of
type B. The two PEs of type A are in the beginning of the
series to display that there are exactly two instances of A in
the architecture and that they are the slowest PEs.

The architecture fingerprint can be extended for hetero-
geneous interconnections by separating PE selections and
interconnection selections with a dash (-). However, the in-
terconnection is the same for all architectures in this paper,
and therefore, it is omitted.

D. Random Architectures

141 different architectures were generated. Homogeneous
architectures, the architectures with only one type of PE, were
inserted manually, and the rest were generated randomly. The
total area for each architecture was limited to8mm2. Table II
shows the proportion of how many times a given number and
type of PE was in all the fingerprints. Rows indicate PE types,
and columns indicate proportion of PEs. The last row shows
the proportion of architectures with a given number of PEs.
The last column shows the proportion of architectures that
had at least one PE of that row’s type. For example, row
A’s third column value means that10.6% of architectures had
exactly2 PEs of type A. Last row’s third column value means
that 14.2% of the fingerprints had exactly2 PEs. Row A’s
last column shows that0.433 ∗ 141 = 61 architectures had
at least one A type PE. The table has zeroes due to area
constraints. For example, an architecture with4 B type PEs
does not exist, because one B type PE takes2mm2, and its
associated interconnect area is0.1mm2. Therefore, the total
area is4 ∗ (2 + 0.1)mm2 > 8mm2.

TABLE III

ATTRIBUTES AND LIMITS OF THE EXPERIMENT

Attribute Values

Number of architectures 141
Maximum architecture area 8mm2

Number of PEs 2 to 5
in each architecture
Number of 300 node graphs 10

Objective function to T (
∑

Aifmax + k
∑

AifiUi),
optimize energy wherei is from 1 to N PEs
k values 0, 1, 4
Optimization algorithm Simulated annealing

E. Applications

The experiment uses ten random task graphs with300 nodes
from the Standard Task Graph set [9]. Random graphs are used
to avoid bias in algorithms and results. Nodes of the STG
are finite, deterministic computational tasks, and edges denote
dependencies between the nodes. Node weights represent the
amount of computation associated with a node. Edge weights
model the amount of communication needed to transfer results
between the nodes. Computational nodes block until their data
dependencies are resolved, i.e. when they have all needed
data. The edge weights were generated randomly from uniform
distribution.

STGs are used because there exists well known efficient and
near optimal scheduling algorithms for them [3]. This ensures
that the observed differences in optimization results are due to
mapping, not scheduling. More complex scheduling properties
would diminish accuracy of mapping analysis. However, this
experiment is agnostic of the STG structure, and so it could
be done with general process networks like Kahn Process
Networks (KPN).

F. Experiment Data

Table III shows attributes that were varied in the experiment.
Each of the10 task graphs was optimized and simulated
against each architecture. This was done for three values of
k = 0, 1 or 4 to change static versus dynamic energy balance.
Thus, total of10 ∗ 141 ∗ 3 = 4230 simulations was run.

G. Software

The optimization software and simulator was written in C
language and executed on a9 machine Red Hat Enterprise
Linux WS release 3 cluster, each machine having a single
2.8 GHz Intel Pentium 4 processor and1 GiB of memory.
Jobs were distributed to a cluster withjobqueue[10] (version
control snapshot2008-05-30) by using OpenSSH [11] and
rsync [12]. No special clustering software or configurations
was used. A total of8.48 · 108 mappings was evaluated in
optimization in27.4 computation days leading to average of
358mappings

s
. Rapid mapping evaluation is a benefit of STGs.

IV. RESULTS

Figure 2 plots energy versus execution time for each archi-
tecture fork = 1 that emphasizes static energy. Figure 3 plots
the same data fork = 4, i.e. bigger weight on dynamic energy.
Energy values are summed and time values are summed for

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
x 10

−3

Relative energy E (1)

E
xe

cu
tio

n
tim

e
T

 (
s)

2 PEs, k = 1
3 PEs, k = 1
4 PEs, k = 1
5 PEs, k = 1

Fig. 2. Energy-time plot for different architectures withk = 1

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
x 10

−3

Relative energy E (1)

E
xe

cu
tio

n
tim

e
T

 (
s)

2 PEs, k = 4
3 PEs, k = 4
4 PEs, k = 4
5 PEs, k = 4

Fig. 3. Energy-time plot for different architectures withk = 4

each application. EnergyE is the sum of objective function
values (1) for a given architecture. Execution timeT is the sum
of execution times for a given architecture. Time is measured
in seconds. Time is comparable even between differentk

values, but energy is not. A pair(E, T) presents a data point,
or architecture, in the figure.E varied in range[1.7, 3.1] for
k = 1, and [4.0, 5.8] for k = 4. Execution time sumT varied
in range[0.43, 3.85]ms for both cases.

Pareto optimal solution boundary is marked with straight
lines. These are not absolute Pareto optimums as not all possi-
ble architectures were evaluated. A Pareto optimal architecture
is such that improving either energy or execution time leads
to worsening the other factor. That is, in the Pareto optimal
architectures, there are no two architectures where the other
is better in terms of both energy and execution time.

TABLE IV

TOP10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL

ARCHITECTURES FORk = 0. ARCHITECTURES ARE LABELED WITH

RESPECT TO THEIR ARCHITECTURE FINGERPRINTS. PARETO OPTIMAL

ARCHITECTURES ARE MARKED WITH*. B EST VALUES IN EACH COLUMN

ARE IN BOLD.

Arch. E T
EAA

E

TAA

T
UP UI A

finger- (1) (ms) (1) (1) (%) (%) (mm
2)

print

CC* 0.925 1.926 1.999 1.999 100 10 2.4
DD* 0.925 1.285 1.999 2.998 100 14 2.4
CCC 0.928 1.289 1.993 2.989 100 28 3.6
DDD* 0.928 0.860 1.991 4.481 99 41 3.6
CCE 0.935 1.016 1.977 3.789 99 35 4.6
CE 0.935 1.375 1.977 2.800 100 13 3.4
DF 0.936 0.917 1.976 4.199 100 20 3.4
DDF* 0.936 0.678 1.975 5.677 99 51 4.6
CCCC 0.941 0.980 1.965 3.931 98 52 4.8
CEE 0.941 0.840 1.964 4.583 99 42 5.6
DFF* 0.943 0.561 1.961 6.864 99 62 5.6
FFF* 0.953 0.482 1.939 7.999 98 73 6.6
DFFF* 1.001 0.428 1.847 9.005 90 96 7.8

A. Top Architectures

Table IV, Table V and Table VI show top10 and all
Pareto optimal architectures for casesk = 0, k = 1 and
k = 4, respectively.k = 0 case is practically pure performance
optimization, although measured in energy, butk = 1 and
k = 4 are strictly energy optimization. EnergyE and total
execution timeT are absolute values, and they are comparable
to the slowest2-PE architecture AA.EAA

E
is the energy gain

over AA architecture, the bigger the better.TAA

T
is the speedup

over AA architecture, the bigger the better.UP is the mean
PE utilization.UI is the mean interconnect utilization.A is
the area measured in square millimeters.

CC wins energy with all values ofk. In k = 1 case, it is
1.7% more energy-efficient than the nearest3 PE solution,
CCC. It is 4, 5% more energy-efficient than the nearest4
PE solution, CCCC. When the role of the dynamic energy
increases ink = 4, the differences are larger:2.5% and6.2%
against CCC and CCCC, respectively.

DFFF is the fastest architecture, and also a Pareto optimum.
It has the highest performance processors given the area
constraints. Note that5 PE solutions do not have performance
advantage over4 PE solutions due to area constraints. For all
values ofk, DFFF runs at4.5× speed compared to the most
energy-efficient architecture CC. However, it consumes only
8.2% (k = 0) to 14.3% (k = 4) more energy.

Most energy-efficient architectures have lower interconnect
utilization UI and higher processor utilizationUP than the
fastest architectures. Lower processor utilization in high per-
formance architectures can be explained with high peeks of
performance demand that they can satisfy. Low performance
architectures have longer task queues during peeks, which
balances the load in time, but makes the critical path longer.

Approximately half the architectures are homogeneous in
top 10.

Table VII and Table VIII show the proportion of how many
times a given number and type of PE was in top10 least

TABLE V

TOP10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL

ARCHITECTURES FORk = 1. FIGURE 2 SHOWS ARCHITECTURES

GENERATED FORk = 1 CASE.

Arch. E T
EAA

E

TAA

T
UP UI A

finger- (1) (ms) (1) (1) (%) (%) (mm
2)

print

CC* 1.707 1.926 1.541 1.999 100 10 2.4
DD* 1.708 1.285 1.541 2.998 100 14 2.4
CCC 1.736 1.289 1.516 2.988 99 27 3.6
DDD* 1.737 0.860 1.515 4.479 99 40 3.6
CE 1.773 1.376 1.484 2.800 100 13 3.4
DF 1.773 0.917 1.484 4.199 100 19 3.4
CCE 1.783 1.016 1.476 3.791 100 34 4.6
CCCC 1.784 0.980 1.475 3.929 98 50 4.8
DDF* 1.784 0.678 1.475 5.679 99 51 4.6
DDDD* 1.798 0.663 1.464 5.810 96 73 4.8
DFF* 1.817 0.561 1.448 6.864 99 61 5.6
FFF* 1.847 0.482 1.425 7.998 98 72 6.6
DFFF* 1.907 0.427 1.380 9.028 90 95 7.8

TABLE VI

TOP10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL

ARCHITECTURES FORk = 4. FIGURE 3 SHOWS ARCHITECTURES

GENERATED FORk = 4 CASE.

Arch. E T
EAA

E

TAA

T
UP UI A

finger- (1) (ms) (1) (1) (%) (%) (mm
2)

print

CC* 4.055 1.927 1.228 1.999 100 9 2.4
DD* 4.056 1.285 1.228 2.998 100 14 2.4
CCC 4.158 1.290 1.198 2.986 99 26 3.6
DDD* 4.159 0.861 1.197 4.476 99 40 3.6
CD 4.239 1.541 1.175 2.500 100 12 2.4
CE 4.285 1.376 1.162 2.800 100 13 3.4
DF 4.285 0.917 1.162 4.199 100 19 3.4
CCCC 4.308 0.980 1.156 3.930 98 49 4.8
DDDD* 4.319 0.663 1.153 5.812 96 71 4.8
CCE 4.325 1.018 1.151 3.785 99 33 4.6
DFF* 4.438 0.561 1.122 6.862 99 60 5.6
FFF* 4.526 0.482 1.100 7.990 98 70 6.6
DFFF* 4.633 0.430 1.075 8.952 91 93 7.8

energy consuming architectures for casesk = 1 andk = 4.
In k = 1 andk = 4 cases,2 PE solutions filled4 and5 of

the top10 positions, respectively.3 PE solutions filled4 and3
in those cases.4 PE solutions filled2 positions in both cases.2
and3 PE solutions seem suitable for low energy applications.
However,3 and4 PE solutions have high performance.

There are no A and B type PEs in the top10. This can be
attributed to poor performance and energy inefficiency.fmax

is a determining factor for static energy (1), and it puts pro-
cessors with frequency less thanfmax into disadvantage. The
minimum value offmax is 200MHz, because the interconnect
is clocked at200MHz. For this reason, A and B types are
not favored. However, C and E types have the advantage of
not increasingfmax. C type was the most common processor
among low-energy architectures.

B. Pareto Optimal Solutions

Pareto optimal solutions are labeled with asterisk (*) in
Table V and Table VI.

For the k = 1 case, static energy proportion for Pareto
optimal architectures varies between52% and 54%. For the

TABLE VII

PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE

WAS IN TOP 10 ARCHITECTURES WITHk = 1. TABLE VALUES ARE

EXPLAINED IN SECTION III-D.

PE Once Twice 3 times 4 times PE
type (%) (%) (%) (%) prop.

A 0 0 0 0 0
B 0 0 0 0 0
C 10 20 20 10 60
D 10 20 20 10 60
E 20 0 0 0 20
F 20 0 0 0 20

TABLE VIII

PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE

WAS IN TOP 10 ARCHITECTURES WITHk = 4. TABLE VALUES ARE

EXPLAINED IN SECTION III-D.

PE Once Twice 3 times 4 times PE
type (%) (%) (%) (%) prop.

A 0 0 0 0 0
B 0 0 0 0 0
C 20 20 10 10 60
D 20 10 10 10 50
E 20 0 0 0 20
F 10 0 0 0 10

k = 4 case, it varies between between21% and 23%. Thus,
the energy profile is rather uniform for both cases.

Pareto optimal solutions have2, 3 and4 PEs.2-PE solutions
do well due to low energy.3 and 4 PE systems are do well
due to a trade-off between energy and performance.

Figure 2 and Figure 3 show the clustering of solutions in the
design space. Pareto optimal solutions constitute mere5% and
6% of all solutions (7 and8 out of 141) for k = 1 andk = 4,
respectively. Therefore, automatic exploration is neededeven
when design space is limited to only6 types of PEs and2
to 5 PEs per architecture. It is not feasible to try out these
solutions by manual work.

C. Optimization Convergence

Figure 4 and Figure 5 plot ratioEAA

E
against mapping

iterations for each Pareto optimal solution. The number of
iterations it takes to win AA increases as the number of
PEs increases. This comes from increased complexity of the
mapping problem and the SA mapping algorithm that scales up
iterations with respect to architecture complexity, the number
of PEs.4 PE architectures take over20000 more iterations
than 3 PE architectures to reach the level of AA (the gain
value1.0).

Our earlier work [8] presented an automated parameteri-
zation method for SA mapping. Originally it was only used
for homogeneous architectures and performance optimization.
The energy-time trade-offs presented in this paper indicate that
the method can also be used for heterogeneous architectures
and energy optimization.

In order to reach energy-efficiency of even AA architecture,
it takes tens of thousands of mappings for4 PE systems.
Hence, it is a non-trivial problem in most cases. This cre-
ates demand for automated mapping (exploration). This may
require behavior level simulation due to simulation time,

0 2 4 6 8 10 12 14 16 18

x 10
4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Mapping iterations

A
ve

ra
ge

 e
ne

rg
y

ga
in

CC, k = 1
DD, k = 1
DDD, k = 1
DDF, k = 1
DFF, k = 1
FFF, k = 1
DDDD, k = 1
DFFF, k = 1

CC, DD

DDD DDF

DFF

FFF DDDD

DFFF

Fig. 4. Average energy gain plotted against mapping optimization iterations
for thek = 1 case. Gain is computed as reference energy value divided by an
energy value. Average gain is normalized to the average best objective value
of the AA architecture. DD architecture’s value1.7 means AA consumed
1.7 times the energy of DD.

0 2 4 6 8 10 12 14 16 18

x 10
4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Mapping iterations

A
ve

ra
ge

 e
ne

rg
y

ga
in

CC, k = 4
DD, k = 4
DDD, k = 4
DFF, k = 4
FFF, k = 4
DDDD, k = 4
DFFF, k = 4

CC, DD
DDD

FFF
DFF

DDDD

DFFF

Fig. 5. Average energy gain plotted against mapping optimization iterations
for the k = 4 case.

as was done in this paper. More accurate simulation may
need thousands of CPUs. Fortunately, thousands of CPUs are
reachable with current development budgets.

V. CONCLUSION

We evaluated heterogeneous architectures by optimizing
both energy and performance for applications. The energy ver-
sus performance trade-off was analyzed by looking at Pareto
optimal solutions. It was found that both energy-efficient and
well performing solutions exist, and in general, performance is
traded for energy-efficiency. Results indicated that automated
exploration tools are needed when the mapping problem
complexity grows, starting already with our experiment setup:
6 types of PEs to select from, and the system consists of2 to

5 PEs.
Also, the results show that our Simulated Annealing method

can be used in energy optimization for heterogeneous architec-
tures, as well as in performance optimization for homogeneous
architectures.

In the future, we plan to utilize SA to directly seek an
optimal HW allocation and consider the bus or NoC energy
more closely.

REFERENCES

[1] M. Gries, Methods for evaluating and covering the design space during
early design development, Integration, the VLSI Journal, Vol. 38, Issue 2,
pp. 131-183, 2004.

[2] W. Wolf, The future of multiprocessor systems-on-chips, Design Au-
tomation Conference 2004, Proceedings. 41st, pp. 681-685, 2004.

[3] Y.-K. Kwok and I. Ahmad,Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surv., Vol. 31,
No. 4, pp. 406-471, 1999.

[4] H. Orsila, E. Salminen, M. Ḧannik̈ainen, T.D. Ḧamäläinen, Optimal
Subset Mapping And Convergence Evaluation of Mapping Algorithms
for Distributing Task Graphs on Multiprocessor SoC, International
Symposium on System-on-Chip, 2007.

[5] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi,Optimization by simulated
annealing, Science, Vol. 200, No. 4598, pp. 671-680, 1983.

[6] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännik̈ainen,
T.D. Hämäläinen, J. Riihim̈aki, K. Kuusilinna, UML-based Multi-
Processor SoC Design Framework, Transactions on Embedded Com-
puting Systems, ACM, 2006.

[7] G. Kahn,The semantics of a simple language for parallel programming,
Information Processing, pp. 471-475, 1974.

[8] H. Orsila, T. Kangas, E. Salminen, T. D. Hämäläinen,Parameterizing
Simulated Annealing for Distributing Task Graphs on multiprocessor
SoCs, International Symposium on System-on-Chip, 2006, pp. 73-76.

[9] Standard task graph set, ONLINE:
http://www.kasahara.elec.waseda.ac.jp/schedule, 2003.

[10] jobqueue. Software. ONLINE:http://zakalwe.fi/ shd/foss/jobqueue/
[11] OpenSSH, software, ONLINE:http://openssh.org
[12] rsync, software, ONLINE:http://rsync.samba.org

