Evaluation of Heterogeneous Multiprocessor
Architectures by Energy and Performance
Optimization

Heikki Orsila, Erno Salminen, Marko &hnilk&inen, Timo D. Ehmalainen
Department of Computer Systems
Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland
Email: {heikki.orsila, erno.salminen, marko.hannikainen, tadeamalainep@tut.fi

Abstract— Design space exploration aims to find an energy- nication time, memory, energy consumption and silicon area

efficient architecture with high performance. A trade-off is constraints. Figure 1(a) shows the mapping process.
needed between these goals, and the optimization effort should . .
also be minimized. In this paper, we evaluate heterogeneous YVe present an experiment where a set of hardware archi-

multiprocessor architectures by optimizing both energy and tectures is generated by random, and applications are rdappe
performance for applications. Ten random task graphs are on them. Hardware architectures ateto 5 PE systems
optimized for each architecture, and evaluated with simulations. \ith both singlescalar and superscalar PEs with frequencie

The energy versus performance trade-off is analyzed by looking -
at Pareto optimal solutions. It is assumed that there is a from 100MHz KQ) 300MHz. The total area of the system is

variety of processing elements whose number, frequency and limited to 8mm=. Applications are300 node acyclic static

microarchitecture can be modified for exploration purposes. It task graphs (STGs) [3]. Figure 1(b) shows the application,

is found that both energy-efficient and well performing solutions its mapping, and the hardware platform. The application is

E’g:t‘lf‘s”‘_’ni(;‘_gaetge;ﬁgtpgrfgmgpecde ies”%‘:Zgofgrt%’;?égg}zﬁiﬁgéced optimized for each architecture with respect to the eneogy f
u nat u X I . . . . .

when the complexity of the mapping problem grows, starting that is Cons_umeq when the application is run. Resultingggner

already with our experiment setup: 6 types of PEs to select from, and execution time values for each architecture are aralyze

and the system consists df to 5 PEs. Our results indicate that our  to find Pareto optimal architectures. Hence, applicatiaes a

Simulated Annealing method can be used for energy optimization optimized with a single objective (energy), but architeesu
with heterogeneous architectures, in addition to performance e analyzed by two objectives.

optimization with homogeneous architectures. ] . .
With the constraints of our experiment, the results show

I. INTRODUCTION there is a clear trade-off for energy and performance. Low

An efficient multiprocessor SoC (MPSoC) implementatiorqumber of PEs means weak performance, but low power. High
umber of PEs means more performance, but loses energy-

requires automated exploration to find an efficient HW alium . .
location, task mapping and scheduling [1]. Heterogeneoﬁg'mency' Also, Increasing number of PES. creates demand fo
MPSoCs are needed for low power, high performance, aﬁgtom_ated exploraﬂo_n t00|s’. as the mapping problem besome
high volume markets [2]. The central idea in multiproc sin°'€ important and increasingly harder.
gh volume marke proceg
SoCs is to increase performance while decreasing energy
consumption. This is achieved by efficient communication
between cores and keeping clock frequency low. 1. RELATED WORK

Mapping means placing each application component to
some processing element (PE). Scheduling means detegminin
execution order of the application components on the piatfo ~ Our earlier work [4] evaluated various mapping algorithms
A large design space must be pruned systematically, sirtoedetermine optimization convergence rate when apptinati
the exploration of the whole design space is not feasibferformance was maximized. This paper adds heterogeneous
[1]. Fast optimization procedure is desired in order to cov®Es to the problem. Simulated annealing (SA) was found to
reasonable design space. However, this comes with the br- an efficient algorithm, and therefore, it is used also in
pense of accuracy. Iterative optimization algorithms e&td this paper. SA is a probabilistic non-greedy algorithm [5]
a number of application mappings for each resource allocatithat explores search space of a problem by annealing from
candidate. For each mapping, the application is schedukechigh to a low temperature state. These methods are also
and simulated to evaluate the cost of the solution, i.e. thised in our Koski flow [6]. Koski is a high-level design tool
value of the objective function. The objective function mafor multiprocessor SoCs and applications. Koski utilizeshK

consider multiple parameters, such as execution time, asmnProcess Networks [7] for application modeling.



Initial comparable wherkt value is constant. The effect of dynamic

solution power can be eliminated by settiig= 0. The static power
part P; of the objective function depends on the number of
transistors (relative td) and their speed (relative tf,,q.).
The dynamic power parf®; depends on total capacitance
(relative to A), switching frequencyf;, and activityU;. Supply
voltage is assumed fixed.

Simulated annealing algorithm was used to optimize en-
ergy (1) by changing application mappings. The algorithm is
specified in [8], but modified in two ways. First, the objeetiv
function is the application energy on a given platform. $et0
the algorithm is run twice for each solution, and the secand r
always starts from the best solution of the first run. This was

- dicate d i done to increase confidence in results, as the SA is stochasti
fﬁé&‘ig”;';::’;?oﬁ;o‘ﬁz fhog(;Z:'}o'ccfézs if'tfe'fns:s_ SA temperature margin valuewas used to scale initial and
ping part. final temperatures [4].

Application HW Platform

Cost evaluation

B. Simulated HW Platform

Application The simulated SoC platform for the experiment is a message
(task graph) passing system where each PE has some local memory, but
no shared memory. The system is simulated on the behavior
level. Each PE and interconnection resource is available fo
a single action at a time. PE task context switch overhead is
0 cycles, but bus arbitration time &cycles for each transfer.

Mappin
----------------------------------------------------------- S Figure 1(b) presents simulated HW platform. PEs are in-
PE PE PE PE W platiorm terconnecte_d with two shared buses that are _inc_iependently
I I I I and dynamically arbitrated. The shared buses limit SoC per-
formance due to contention, latency and throughput. Bus
Communication network frequency i200MHz for both buses and they asé bits wide.

. - . The bus silicon area & 1mm? per processor. Each node in the
(b) An example MPSoC that is optimized. The system consisthef t g .
application and the HW platform. T denotes a task, and PE genat (@S graph sends a specific number of bytes after computation
processing element. thus creating contention on the shared buses. Which ever bus
Fig. 1. Diagram of the optimization process and the systemisheptimized 5 free at a time is used for communication by using FIFO
arbitration, i.e. which ever PE comes first gets the bus.
Table | shows different types of PEs, each presented with
a letter. Multiprocessor architectures were varied ushepe
A. Objective And Optimization Algorithm PEs. An architecture consists @fto 5 PEs, and the total

An experiment was done to investigate trade-offs betwe8fe2 hasmm? upper-bound. Architectures are presented with

energy and application performance. The objective fundfid fingerprint cpdes frpm these letters. Paramgtisrthe average
is to minimize the total energy consumption (static + dyrgmi number of instructions per cycle. Frequengyhas3 values:

The energy is measured in relative values. It is not a phiysic?0MHz, 200MHz and300MHz. Processor speed is measured
energy unit. in millions of operations per second, which equalsf. A is

the area in square millimeters. Each PE can be implemented
N N as a singlescalar or as a superscalar version. The superscal
E=T(Pi+Ps) =T Aifmar +kY_AifiVi) (1) version can executp = 1.8 instructions per clock. The
=1 =1 singlescalar version has areh = 1mm?, superscalar has
whereT is the execution time of the application, determined = 2mm?2. 2 values ofp and3 values off implies6 different
in simulation. N is the number of PEs4; is the area of PE PEs. A task graph node of cycles can be computed W
i and f; is its frequency.f,... IS the maximum frequency time.
of any PE or interconnect, which is at le&t0MHz in this ) i o
experiment because the bus operateg0atMHz. Utilization C- Architecture Fingerprinting
U; is the proportion of non-idle cycles of the HEThe HW Architecture fingerprintingis used to present results. An
architecture defines valued; and f; whereas the mapping architecture is characterized by a series of letters from At
indirectly definesI” and valuedJ;. Letters are labels for different PEs specified in Table Itdrst
Coefficient k is the factor that changes the relative proare assigned in the order of increasing number of operations
portion of static versus dynamic energy. Energy values gper second. Letter A is assigned for the slowest PE, and fette

IIl. EXPERIMENT SETUP



TABLE | TABLE Il

AVAILABLE PROCESSOR TYPES ATTRIBUTES AND LIMITS OF THE EXPERIMENT
PE type | f (MHz) | p (52%) | Speed {722%) | A (mm?) | [ Attribute [ Values
A 100 1.0 100 1 Number of architectures 141 2
B 100 1.8 130 2 Maximum architecture area| 8mm
C 200 1.0 200 1 Number of RES 2t05
D 300 1.0 300 1 in each architecture
E 200 18 360 3 Numbgr of 3OQ node graphs 10
F 300 1.8 540 2 Objective function to T Aifmaz + kY AifiUy),
optimize energy where: is from 1 to N PEs
TABLE II k values 0,1,4
PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE Optimization algorithm Simulated annealing
WAS IN THE EXPERIMENT S 141 FINGERPRINTS TABLE VALUES ARE
EXPLAINED IN SECTION I1I-D. E. Applications
PE 1PE| 2PEs| 3PEs| 4 PEs| 5 PEs| PE prop. . !
ype | %) | @) | @) | () E’%) (%) prop The experiment uses ten random task graphs $¢ithnodes
A 284 | 106 | 28 0.7 07 133 from th_e St_and_ard Tasl_< Graph set [9]. Random graphs are used
B 284 | 7.1 1.4 0.0 0.0 36.9 to avoid bias in algorithms and results. Nodes of the STG
C 305192 143 |14 07 461 are finite, deterministic computational tasks, and edgestee
D 319 | 85 5.7 1.4 0.7 48.2 d dencies b h d d iah h
E 319 | 106 | 2.1 0.0 0.0 447 ependencies etwgen the nodes. N'o e weights represqnt the
F 29.1 | 9.2 1.4 0.0 0.0 39.7 amount of computation associated with a node. Edge weights
Any | 0.0 | 142 | 27.7 | 333 | 2438 model the amount of communication needed to transfer gesult

between the nodes. Computational nodes block until the& da

is assigned for the fastest PE. Each PE in the architectuse géeépendencies are resolved, i.e. when they have all needed

a single letter in the architecture fingerprint. The lettars data. The edge weights were generated randomly from uniform

organized into alphabetical order to facilitate human rigsai distribution.

pattern recognition, i.e. make it easier to see slow, fast an STGs are used because there exists well known efficient and

same type of PEs. For example, AAB fingerprint means ngar optimal scheduling algorithms for them [3]. This eesur

three PE architecture with two PEs of type A and one PE tfat the observed differences in optimization results aeetd

type B. The two PEs of type A are in the beginning of th&1apping, not scheduling. More complex scheduling properti

series to display that there are exactly two instances of A Y¥puld diminish accuracy of mapping analysis. However, this

the architecture and that they are the slowest PEs. experiment is agnostic of the STG structure, and so it could
The architecture fingerprint can be extended for heterBe done with general process networks like Kahn Process

geneous interconnections by separating PE selections AfRjworks (KPN).

interconnection selections with a dash (). Hovs{ever_, the ip Experiment Data

terconnection is the same for all architectures in this pape

and therefore. it is omitted. Table Ill shows attributes that were varied in the experimen

Each of thel0 task graphs was optimized and simulated
against each architecture. This was done for three values of
k = 0,1 or 4 to change static versus dynamic energy balance.

141 different architectures were generated. Homogeneoggys, total of10 * 141 * 3 = 4230 simulations was run.
architectures, the architectures with only one type of P&ew

inserted manually, and the rest were generated randoméy. h. Software

total area for each architecture was limitedsiom?. Table I The optimization software and simulator was written in C
shows the proportion of how many times a given number anghguage and executed on9amachine Red Hat Enterprise
type of PE was in all the fingerprints. Rows indicate PE typesinux WS release 3 cluster, each machine having a single
and columns indicate proportion of PEs. The last row showss GHz Intel Pentium 4 processor aridGiB of memory.

the proportion of architectures with a given number of PE3obs were distributed to a cluster withhqueue[10] (version
The last column shows the proportion of architectures theéntrol snapsho2008-05-3) by using OpenSSH [11] and
had at least one PE of that row's type. For example, romync [12]. No special clustering software or configuragion
A third column value means tha.6% of architectures had was used. A total oB.48 - 108 mappings was evaluated in
exactly2 PEs of type A. Last row’s third column value meangptimization in27.4 computation days leading to average of
that 14.2% of the fingerprints had exactly PEs. Row As 358™akPinds Rapid mapping evaluation is a benefit of STGs.
last column shows tha.433 « 141 = 61 architectures had

at least one A type PE. The table has zeroes due to area IV. RESULTS

constraints. For example, an architecture witl8 type PEs  Figure 2 plots energy versus execution time for each archi-
does not exist, because one B type PE takesn?, and its tecture fork = 1 that emphasizes static energy. Figure 3 plots
associated interconnect arealidmm?. Therefore, the total the same data fot = 4, i.e. bigger weight on dynamic energy.
area is4 x (2 + 0.1)mm? > 8mm?2. Energy values are summed and time values are summed for

D. Random Architectures



5 TABLE IV

x 10

TOP 10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL
x  2PEs k=1 x ARCHITECTURES FORk = 0. ARCHITECTURES ARE LABELED WITH
O 3PEs, k=1
25l o APEZ, k=1 x o | RESPECT TO THEIR ARCHITECTURE FINGERPRINTSARETO OPTIMAL
v SPEs k=1 ARCHITECTURES ARE MARKED WITH*. BEST VALUES IN EACH COLUMN
x ARE IN BOLD.
AN x o 4
- x o ° Arch. E T Baa T0aa Typ [Ur | A
E B o finger- 1) (ms) (1) 1) (%) | (%) | mm?)
£l . o X v print
é ' x cC* 0.925 1.926 1.999 1.999 100 10 2.4
@ 0 DD* 0.925 1.285 1.999 2.998 100 14 24
. x CCC 0.928 1.289 1.993 2.989 100 28 3.6
ir § 9 ) DDD* 0.928 0.860 1.991 4.481 99 41 3.6
Sov P CCE 0.935 | 1.016 | 1.977 | 3.789 | 99 | 35 4.6
B CE 0.935 1.375 1.977 2.800 100 13 3.4
0.5 % 93@] 4 DF 0.936 0.917 1.976 4.199 100 20 3.4
DDF* 0.936 0.678 1.975 5.677 99 51 4.6
CCCC 0.941 0.980 1.965 3.931 98 52 4.8
0 . . . . . CEE 0.941 0.840 1.964 4.583 99 42 5.6
0 05 1 Relative elfergyE(l) 2 25 3 DFF* 0.943 0.561 1.961 6.864 99 62 5.6
FFF* 0.953 0.482 1.939 7.999 98 73 6.6
Fig. 2. Energy-time plot for different architectures with= 1 DFFF* | 1.001 | 0428 | 1847 | 9.005 90 96 7.8

A. Top Architectures
x10°

3 Table IV, Table V and Table VI show top0 and all
2PEs k=4 « Pareto optimal architectures for cases= 0, ¥ = 1 and
PR . o k = 4, respectivelyk = 0 case is practically pure performance
5PEs, k=4 optimization, although measured in energy, ut= 1 and

; k = 4 are strictly energy optimization. Energy and total
2t x e 1 execution timel” are absolute values, and they are comparable
to the slowes®-PE architecture AA.E% is the energy gain
; E v over AA architecture, the bigger the bett&% is the speedup
« & o  © over AA architecture, the bigger the bettéfp is the mean

X\O « 9 PE utilization. U; is the mean interconnect utilizationt is
@
o

< 00 x

Execution time T (s)

§' 2 2@ 1 the area measured in square millimeters.
oY = CC wins energy with all values df. In k = 1 case, it is
" 1.7% more energy-efficient than the near@stPPE solution,
CCC. It is 4,5% more energy-efficient than the neareist
PE solution, CCCC. When the role of the dynamic energy
o . L L L . . increases irk = 4, the differences are large2:5% and6.2%
Relative energy E (1) against CCC and CCCC, respectively.
DFFF is the fastest architecture, and also a Pareto optimum.
It has the highest performance processors given the area
constraints. Note th&t PE solutions do not have performance
each application. Energy’ is the sum of objective function advantage ovet PE solutions due to area constraints. For all
values (1) for a given architecture. Execution tifiiés the sum values ofk, DFFF runs att.5x speed compared to the most
of execution times for a given architecture. Time is measurenergy-efficient architecture CC. However, it consumes onl
in seconds. Time is comparable even between diffefents.2% (k = 0) to 14.3% (k = 4) more energy.
values, but energy is not. A paifZ, T') presents a data point, Most energy-efficient architectures have lower intercatne
or architecture, in the figure varied in rang€[1.7,3.1] for  utilization U; and higher processor utilizatiotip than the
k=1, and[4.0,5.8] for k = 4. Execution time suni’ varied fastest architectures. Lower processor utilization irhhigr-
in range[0.43, 3.85]ms for both cases. formance architectures can be explained with high peeks of
Pareto optimal solution boundary is marked with straighterformance demand that they can satisfy. Low performance
lines. These are not absolute Pareto optimums as not all posschitectures have longer task queues during peeks, which
ble architectures were evaluated. A Pareto optimal arctoite balances the load in time, but makes the critical path langer
is such that improving either energy or execution time leadsApproximately half the architectures are homogeneous in
to worsening the other factor. That is, in the Pareto optimtdp 10.
architectures, there are no two architectures where ther oth Table VII and Table VIII show the proportion of how many
is better in terms of both energy and execution time. times a given number and type of PE was in top least

0.5

Fig. 3. Energy-time plot for different architectures with= 4



TABLE V TABLE VI

ToP10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE
ARCHITECTURES FORk = 1. FIGURE 2 SHOWS ARCHITECTURES WAS IN TOP 10 ARCHITECTURES WITHk = 1. TABLE VALUES ARE
GENERATED FOREK = 1 CASE. EXPLAINED IN SECTION III-D.
Arch. B T EA?A TATA Up Uy A PE Once | Twice | 3 times | 4 times | PE
finger- (1) (ms) ©) @) (%) | (%) | tmm2) type | (%) | (%) (%) (%) prop.
print A 0 0 0 0 0
CC* 1.707 | 1.926 | 1.541 | 1.999 | 100 | 10 | 2.4 B 0 0 0 0 0
DD* 1.708 | 1.285 | 1.541 | 2.998 | 100 | 14 | 2.4 c 10 20 20 10 60
ccc 1.736 | 1.289 | 1.516 | 2.988 | 99 | 27 3.6 D 10 20 20 10 60
DDD* 1.737 | 0.860 | 1.515 | 4.479 | 99 | 40 3.6 E 20 0 0 0 20
CE 1.773 | 1.376 | 1.484 | 2.800 | 100 | 13 3.4 F 20 0 0 0 20
DF 1.773 | 0.917 | 1.484 | 4.199 | 100 | 19 3.4 TABLE VIII
CCE 1.783 | 1.016 | 1.476 | 3.791 | 100 | 34 4.6
ccce 1.784 0.980 1.475 3.929 98 50 4.8 PROPORTION OF HOW MANY TIMES A GIVEN NUMBER AND TYPE OFPE
DDF* 1.784 0.678 1.475 5.679 99 51 4.6 WAS IN TOP 10 ARCHITECTURES WITHk = 4. TABLE VALUES ARE
DDDD* 1.798 0.663 1.464 5.810 96 73 4.8 EXPLAINED IN SECTION III-D.
DFF* 1.817 | 0.561 | 1.448 | 6.864 | 99 | 61 5.6 i __ i
FFF* | 1.847 | 0482 | 1425 | 7.998 | 98 | 72 | 6.6 PE | Qnoe| Twce | & fmes | 4 fmes | PE
DFFF* | 1.907 | 0.427 | 1.38 | 9.028 | 90 | 95 | 78 ype | (%) | (%) | (%) (%) prop.
A 0 0 0 0 0
TABLE VI B 0 0 0 0 0
TOP 10 ARCHITECTURES TOGETHER WITH3 PARETO OPTIMAL C 20 20 10 10 60
ARCHITECTURES FORk = 4. FIGURE 3 SHOWS ARCHITECTURES D 20 10 10 10 50
E 20 0 0 0 20
GENERATED FORkK = 4 CASE. = 10 0 0 0 10
Arch. E T Eaa [ Taa T yp (U | A
finger- 1 ms 1 1 % % (mm?2) . .
pri?]t 0 (ms) 0 0 %) | ( k = 4 case, it varies between betwe2h’% and 23%. Thus,
CCr 2055 | 1927 1 1228 | 1999 | 100 | 9 2.4 | the energy profile is rather uniform for both cases.
DD* 4.056 | 1.285 | 1.228 | 2.998 | 100 | 14 | 24 Pareto optimal solutions ha¥e 3 and4 PEs.2-PE solutions
ccc 4.158 | 1.290 | 1.198 | 2.986 | 99 | 26 3.6
DOD* 4150 | 086l | 1197 | 2476 | 99 | 10 | 36 do well due to low energy3 and4 PE systems are do well
cD 4239 | 1541 | 1.175 | 2500 | 100 | 12 2.4 | due to a trade-off between energy and performance.
SE 4.285 | 1.376 | 1.162 | 2.800 | 100 | 13 | 3.4 Figure 2 and Figure 3 show the clustering of solutions in the
4285 | 0.917 | 1.162 | 4.199 | 100 | 19 3.4 . . : :
ceee | 4308 | 0950 | 1156 | 3930 | 98 | 49 | 48 design space._Pareto optimal solutions constitute Bigrand
DDDD* | 4.319 | 0.663 | 1.153 | 5.812 | 96 | 71 48 | 6% of all solutions ¥ and8 out of 141) for k = 1 andk = 4,
CCE 4325 | 1.018 | 1.151 | 3.785 | 99 | 33 | 4.6 | respectively. Therefore, automatic exploration is neeglezh
DFF* 4438 | 0561 | 1.122 | 6.862 | 99 | 60 5.6 ; e limi
FEp* 1596 | 0482 | 1100 | 7990 | o8 | 70 | 66 when design space is I|m|ted_ to on(ytypes of PEs an@
DFFF* | 4633 | 0.430 | 1.075 | 8952 | 91 | 93 78 | to 5 PEs per architecture. It is not feasible to try out these

solutions by manual work.

energy consuming architectures for cages 1 andk = 4. C. Optimization Convergence
In k=1 andk = 4 cases2 PE solutions filledt and5 of

the top10 positions, respectively@ PE solutions filledt and3

in those cased. PE solutions fille@ positions in both cases.

and3 PE solutions seem suitable for low energy application

However,3 and4 PE solutions have high performance.
There are no A and B type PEs in the to@ This can be

attributed to poor performance and energy inefficienGy...

Figure 4 and Figure 5 plot ratioE% against mapping
iterations for each Pareto optimal solution. The number of
iterations it takes to win AA increases as the number of
PEs increases. This comes from increased complexity of the
mapping problem and the SA mapping algorithm that scales up
iterations with respect to architecture complexity, thenber

of PEs.4 PE architectures take ov&0000 more iterations

is a determining factor for static energy (1), and it pUtS'pr(fham 3 PE architectures to reach the level of AA (the gain
cessors with frequency less thdp, .. into disadvantage. The value 1.0)

minimum value off,, .. is 200MHz, because the interconnect Our earlier work [8] presented an automated parameteri-

is clocked at200MHz. For this reason, A and B types are, _sion method for SA mapping. Originally it was only used
not f avored'. However, C and E types have the advantagef8 homogeneous architectures and performance optiraizati
not increasingfmag. C ty_pe was the most common Processofyq energy-time trade-offs presented in this paper inditfzt
among low-energy architectures. the method can also be used for heterogeneous architectures
and energy optimization.
In order to reach energy-efficiency of even AA architecture,
Pareto optimal solutions are labeled with asterisk (*) iit takes tens of thousands of mappings fbrPE systems.
Table V and Table VI. Hence, it is a non-trivial problem in most cases. This cre-
For the k = 1 case, static energy proportion for Paretates demand for automated mapping (exploration). This may
optimal architectures varies betwe&2% and 54%. For the require behavior level simulation due to simulation time,

B. Pareto Optimal Solutions
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CC, DD

Average energy gain

5 PEs.

Also, the results show that our Simulated Annealing method
can be used in energy optimization for heterogeneous archit
tures, as well as in performance optimization for homogaseo
architectures.

In the future, we plan to utilize SA to directly seek an
optimal HW allocation and consider the bus or NoC energy
more closely.
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