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IntroductionIntroduction

� More and more software developers and companies are basing their 

software products on open source components (i.e., libraries, 

platforms)

� Shorter development cycles

� Lower development costs

� Access to source code

� Improved product quality

� …

� Risks:

� Quality attributes such as reliability, security, and safety are hidden 

properties� Fixing can never be guaranteed

� Many advocated hypotheses made about open source software are not 

always true.
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IntroductionIntroduction

� Possible solution: regularly update to newer versions of the used 

open source components, which leads to faster incorporation of 

community contributions such as bug fixes and new component 

features.

� Basic usage pattern: whenever a new version of a component is 

released, users of that component immediately switch to the new 

release.

� One might hypothesize that most practices will eventually deviate

from this basic principle due to various influential factors.



OSS 2008

Milan, Italy 5

Department of Software Systems

Tampere University of Technology

Reuse of Open Source componentsReuse of Open Source components

� A. Always part of source: the component is incorporated during 

development time (e.g., the Linux kernel)

� B. Added when released: the component is incorporated during 

release time (e.g., xvidcap project)

� C. User must provide source: the component source code is 

incorporated by the user when the project is recompiled (e.g., eCos

tool chain)

� D. User must provide binary: the component binary is provided by 

the user when the project is linked (e.g., OpenSSH)
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Research MethodologyResearch Methodology

� Research Questions:

� What reuse mechanisms are adopted most often when reusing open 
source components?

� What kind of update propagation patterns are practiced?

� How fast/often does the user community react to new releases?

� What technical and non-technical criteria influence the community 
response?

� What best practices can be identified to promote better follow-up of 
updates and smoother update propagation?

� Selecting suitable component candidates:

� zlib: a lossless compression library

� FFmpeg: a collection of utilities for processing audio and video files and 
streams

� Extracting relevant data: bug reports, revision history, source code

� Analyzing the data w.r.t the research questions

� Making recommendations
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The The zlibzlib casecase

� Three security bugs:

� A double free bug reported on 2002-03-11

� A DoS/crash bug reported on 2004-08-25

� A buffer overrun/DoS/crash bug reported on 2005-06-30

� 8 projects: AbiWord, BZFlag, CVS, Linux, ppp, Python, RPM, zlib

� Evolution: 11-04-1995 to 18-07-2005

� 2 core authors, 42 contributors

� 628 documented changes

� 89% changes from the top 5 contributors
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The The zlibzlib casecase

� Bug status in the projects:

� Does not apply: The bug doesn’t have an effect on the project, because 

the vulnerable code never existed inside the project (e.g., Linux kernel)

� Known: The time (in days) to fix a bug is known from version history 

(e.g., CVS)

� Not fixed: The bug is still not fixed (e.g., AbiWord for Windows)

� Unknown: Status of the fix is unknown due to unavailability of version 

history (e.g., Python)
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The The zlibzlib casecase

Number of days to fix 3 different zlib bugs
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The The zlibzlib casecase

� Only 1 system for explicit checking for updates

� Possible reasons for this lapse:

� Weak virtual organization

� Lack of explicit task lists

� Lack of command hierarchy

� Lack of resources for testing new versions of zlib
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The The zlibzlib casecase

Projects and their reuse categories
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The The FFmpegFFmpeg casecase

� A core library called libavcodec

� A library interface specification in the header file avcodec.h

� 6 projects: avidemux, avifile, ffdshow, gstreamer, mythtv, xbmc

� Evolution: 07-2001 to 06-2007: 

� 38 contributors

� 617 changes

� From 177 (5.1 kbytes) to

2940 (90 kbytes)

lines of code
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The The FFmpegFFmpeg casecase

The 10 most recent updates (from 2006-10-09 to2007-05-10) of 

avcodec.h in avifile
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The The FFmpegFFmpeg casecase

� Shared interests, features and developers

� Update propagation entails significant effort

� Most projects fall into reuse category A, few go for option B

Summary of update data for FFmpeg
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Guidelines for Managing UpdatesGuidelines for Managing Updates

� Avoid source and binary code duplication!

� Document important changes in version control history!

� Tag important changes in version control history!

� For components: maintain a global notification system for changes!

� For projects: facilitate follow-up of component updates!

� Write a procedure for the update process!
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ConclusionsConclusions

� We have analyzed update propagation practices in zlib and 

FFmpeg.

� Scripts/results/experiences are found online.

� We have found that update propagation delay varies significantly

among projects.

� We cannot claim that the results are generalizable.

� For further investigation, more case studies should be considered.

� In order to validate the relevance of the proposed guidelines, a 

questionnaire to the open source community could be planned and 

carried out.
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Thank You!Thank You!

Q&AQ&A


