
Update Propagation Practices in Highly Update Propagation Practices in Highly 

Reusable Open Source Reusable Open Source 

OSS 2008OSS 2008

Milan, ItalyMilan, Italy

Heikki OrsilaHeikki Orsila11, , JacoJaco GeldenhuysGeldenhuys22, Anna Ruokonen, Anna Ruokonen11, and , and ImedImed HammoudaHammouda11

11 Tampere University of Tampere University of TechnologyTechnology, Finland, Finland

22 Stellenbosch University, South AfricaStellenbosch University, South Africa



OSS 2008

Milan, Italy 2

Department of Software Systems

Tampere University of Technology

OutlineOutline

� Introduction

� Research methodology

� The zlib case

� The FFmpeg case

� Guidelines for Managing Updates

� Conclusions



OSS 2008

Milan, Italy 3

Department of Software Systems

Tampere University of Technology

IntroductionIntroduction

� More and more software developers and companies are basing their 

software products on open source components (i.e., libraries, 

platforms)

� Shorter development cycles

� Lower development costs

� Access to source code

� Improved product quality

� …

� Risks:

� Quality attributes such as reliability, security, and safety are hidden 

properties� Fixing can never be guaranteed

� Many advocated hypotheses made about open source software are not 

always true.



OSS 2008

Milan, Italy 4

Department of Software Systems

Tampere University of Technology

IntroductionIntroduction

� Possible solution: regularly update to newer versions of the used 

open source components, which leads to faster incorporation of 

community contributions such as bug fixes and new component 

features.

� Basic usage pattern: whenever a new version of a component is 

released, users of that component immediately switch to the new 

release.

� One might hypothesize that most practices will eventually deviate

from this basic principle due to various influential factors.



OSS 2008

Milan, Italy 5

Department of Software Systems

Tampere University of Technology

Reuse of Open Source componentsReuse of Open Source components

� A. Always part of source: the component is incorporated during 

development time (e.g., the Linux kernel)

� B. Added when released: the component is incorporated during 

release time (e.g., xvidcap project)

� C. User must provide source: the component source code is 

incorporated by the user when the project is recompiled (e.g., eCos

tool chain)

� D. User must provide binary: the component binary is provided by 

the user when the project is linked (e.g., OpenSSH)



OSS 2008

Milan, Italy 6

Department of Software Systems

Tampere University of Technology

Research MethodologyResearch Methodology

� Research Questions:

� What reuse mechanisms are adopted most often when reusing open 
source components?

� What kind of update propagation patterns are practiced?

� How fast/often does the user community react to new releases?

� What technical and non-technical criteria influence the community 
response?

� What best practices can be identified to promote better follow-up of 
updates and smoother update propagation?

� Selecting suitable component candidates:

� zlib: a lossless compression library

� FFmpeg: a collection of utilities for processing audio and video files and 
streams

� Extracting relevant data: bug reports, revision history, source code

� Analyzing the data w.r.t the research questions

� Making recommendations



OSS 2008

Milan, Italy 7

Department of Software Systems

Tampere University of Technology

The The zlibzlib casecase

� Three security bugs:

� A double free bug reported on 2002-03-11

� A DoS/crash bug reported on 2004-08-25

� A buffer overrun/DoS/crash bug reported on 2005-06-30

� 8 projects: AbiWord, BZFlag, CVS, Linux, ppp, Python, RPM, zlib

� Evolution: 11-04-1995 to 18-07-2005

� 2 core authors, 42 contributors

� 628 documented changes

� 89% changes from the top 5 contributors



OSS 2008

Milan, Italy 8

Department of Software Systems

Tampere University of Technology

The The zlibzlib casecase

� Bug status in the projects:

� Does not apply: The bug doesn’t have an effect on the project, because 

the vulnerable code never existed inside the project (e.g., Linux kernel)

� Known: The time (in days) to fix a bug is known from version history 

(e.g., CVS)

� Not fixed: The bug is still not fixed (e.g., AbiWord for Windows)

� Unknown: Status of the fix is unknown due to unavailability of version 

history (e.g., Python)



OSS 2008

Milan, Italy 9

Department of Software Systems

Tampere University of Technology

The The zlibzlib casecase

Number of days to fix 3 different zlib bugs



OSS 2008

Milan, Italy 10

Department of Software Systems

Tampere University of Technology

The The zlibzlib casecase

� Only 1 system for explicit checking for updates

� Possible reasons for this lapse:

� Weak virtual organization

� Lack of explicit task lists

� Lack of command hierarchy

� Lack of resources for testing new versions of zlib



OSS 2008

Milan, Italy 11

Department of Software Systems

Tampere University of Technology

The The zlibzlib casecase

Projects and their reuse categories



OSS 2008

Milan, Italy 12

Department of Software Systems

Tampere University of Technology

The The FFmpegFFmpeg casecase

� A core library called libavcodec

� A library interface specification in the header file avcodec.h

� 6 projects: avidemux, avifile, ffdshow, gstreamer, mythtv, xbmc

� Evolution: 07-2001 to 06-2007: 

� 38 contributors

� 617 changes

� From 177 (5.1 kbytes) to

2940 (90 kbytes)

lines of code



OSS 2008

Milan, Italy 13

Department of Software Systems

Tampere University of Technology

The The FFmpegFFmpeg casecase

The 10 most recent updates (from 2006-10-09 to2007-05-10) of 

avcodec.h in avifile



OSS 2008

Milan, Italy 14

Department of Software Systems

Tampere University of Technology

The The FFmpegFFmpeg casecase

� Shared interests, features and developers

� Update propagation entails significant effort

� Most projects fall into reuse category A, few go for option B

Summary of update data for FFmpeg



OSS 2008

Milan, Italy 15

Department of Software Systems

Tampere University of Technology

Guidelines for Managing UpdatesGuidelines for Managing Updates

� Avoid source and binary code duplication!

� Document important changes in version control history!

� Tag important changes in version control history!

� For components: maintain a global notification system for changes!

� For projects: facilitate follow-up of component updates!

� Write a procedure for the update process!



OSS 2008

Milan, Italy 16

Department of Software Systems

Tampere University of Technology

ConclusionsConclusions

� We have analyzed update propagation practices in zlib and 

FFmpeg.

� Scripts/results/experiences are found online.

� We have found that update propagation delay varies significantly

among projects.

� We cannot claim that the results are generalizable.

� For further investigation, more case studies should be considered.

� In order to validate the relevance of the proposed guidelines, a 

questionnaire to the open source community could be planned and 

carried out.



OSS 2008

Milan, Italy 17

Department of Software Systems

Tampere University of Technology

Thank You!Thank You!

Q&AQ&A


