Optimal Subset Mapping And Convergence
Evaluation of Mapping Algorithms for Distributing
Task Graphs on Multiprocessor SoC

Heikki Orsila, Erno Salminen, Marko &hnil&inen, Timo D. Famalainen
Institute of Digital and Computer Systems
Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland
Email: {heikki.orsila, erno.salminen, marko.hannikainen, tioamalainep@tut.fi

Abstract—Mapping an application on Multiprocessor System- This paper presents a new mapping algorithm called Op-
on-Chip (MPSoC) is a crucial step in architecture exploration. timal Subset Mapping@SM) to speedup architecture explo-
The problem is to minimize optimization effort and application ration. It is compared to two variants of Simulated Anneglin

execution time. Applications are modeled as static acyclic task . . .
graphs which are mapped to an MPSoC. The analysis is based on algorithm ©A and SA+AT) [2][3], Group Migration GM),

extensive simulations with300 node graphs from the Standard and their combinationHybrid) [4]. Furthermore, a random
Graph Set. algorithm is used as basis for comparison. The system has

We present a new algorithm, Optimal Subset Mapping (OSM), 2, 4, or 8 identical processing elements (PEs). Ten random

that rapidly evaluates task distribution mapping space, and then 300.node STGs are selected from 5]
compare it to simulated annealing (SA) and group migration '

(GM) algorithms. OSM was developed to make architecture
exploration faster. Efficiency of OSM is 5.0x and 2.4x than Il. RELATED WORK

that of GM and SA, respectively, when efficiency is measured Braun et al. 6 mpared11 optimization algorithms for
as the application speedup divided by the number of iterations aun et al. [6] compare op ation algo s o

needed for optimization. This saves81% and 62% in wall distribution of tasks without data dependencigs tasks were
clock optimization time, respectively. However, this is a trade- parallelized ontol6 machines and total execution time was
off because OSM reache®6% and 89% application speedup measured for each heuristics. Our system schedi@sasks
gompa_ltred to GM and SbAhRe.S”'ts jhsc’x’ that OSbMta“d th\rf havte with data dependencies férPEs. It must also be noted that
pposiie convergence behavior an comes between these Wour tasks havao times more edges than tasks in [6]. They do
|. INTRODUCTION approximately3 000 mappings for each SA run, which can
be shown to be far too few far6 machines an&12 tasks in
e case that tasks are dependent [2]. Our SA implementation
ngs approximatel00 000 mappings for a single run with
gependent tasks. Their paper does not present convergence
properties of SA as a function of iterations, and we are not
aware of related work that measures SA convergence for task
mapping with respect to iterations and the number of PEs.

r . " .
CPOur earlier work [3] presented a heuristics for automaltycal
ule is determined to evaluate the cost. The cost functi&?lecung temperature schedule for SA to speedup convezgen

may consider multiple parameters, such as execution tinde dependent tasks. Also, [2] presented heuristics to &elec

communication time, memory, energy consumption and $“ic(gofal iteration number' for reasongble efficiency for SA with
area constraints. dependent tasks. This paper will merge those results and

SoC applications can be modeled as acyclic static tagkmpare them to various mapping algorithms, including the
graphs (STGs) [1]. Nodes of the STG are finite, deterministic "V OSM.
computational tasks, and edges denote dependencies hetwee
the nodes. Node weights represent the amount of computation
associated with a node. Edge weights model the amount ofThe mapping algorithms can be classified as follows. First,
communication needed to transfer results between the nodssthe algorithm deterministic (same results on every inde-
Computational nodes block until their data dependencies grendent run) or probabilistic (result varies between runs)
resolved, i.e. when they have all needed data. Details of tBecond, does algorithm accept a move to worse state along
task graph parallelization system employed in this paper cthe run (non-greedy) or only better moves (greedy). He#ce,

be found in [2]. categories can be identified.

An efficient MPSoC implementation requires exploration t
find an optimized architecture as well as mapping and sched
ing of the application. A large design space must be prun
systematically, since the exploration of the whole desjgarcs
is not feasible. However, fast optimization procedure sirgel
in order to cover reasonable design space. Iterative &hgosi
evaluate a number of application mappings for each resou
allocation candidate. For each mapping, an applicatioedch

IIl. STUDIED ALGORITHMS

Architecture exploration needs an automatic selection wifitial temperaturély and the final temperatutg; are selected
optimization parameters depending on the architectureapnd by the method in [3]. The algorithm terminates when the final
plication sizes. Otherwise, an algorithm may spend exeesstemperature is reached and sufficient number of consecutive
time optimizing a small systems or result in a sub-optimahoves have been rejected.
solution for a large system. The goal is to avoid unnecessaryThe basic version of simulated annealing is referred here as
optimization iterations, while keeping application penfiance SAand one with automatic temperature selectiorSas-AT
close to architecture limits. This will save optimizatiamé In general, SA+AT achieves nearly the same performance as
and thus speed up architecture exploration. SA but in considerably fewer iterations. The Hybrid algomit

The term move means here the change of the locatiofd] uses SA for initial optimization and finishes the mapping
(PE) of one or multiple tasks. All studied algorithms (excewith GM. The parameters for SA variants are temperature
random) ensure that move is always made to a different Range (initial and final), number of temperature levelsisga
which saves many iterations. This is a crucial detail fayot between levels, and number of iteration on each level. Eurth
in many papers. For example, randomizing a single task fomore, move heuristic, acceptance function, and end conditi
PEs will result in50% of iterations being useless because thaust be defined.

task is not actually moved anywhere. The total number of iterations for SA is

STGs are used because there exists well known efficient and T
near optimal scheduling algorithms for them. This ensunas t (log T | DHN(M —1) 1)
the observed differences are due to mapping. Harder schedul logg ’

ing properties would diminish accuracy of mapping analysi@hereq is the temperature scaling factor [2].
All presented algorithms are agnostic of STG structure,sand

they will also work with general process networks like Kahg, Random

Process Networks (KPN) [7]. These algorithms are also used,
in our Koski flow, that has a KPN-like process network [8]. A simple random mapping algorithm is included just to

Koski is a high-level design tool for multiprocessor SoCs anobtain basis for algorithm comparison. The algorithm tries

applications. random mappings without regarding the results from previou

Details of the used algorithms can be found in [2][3][4£;|rat'0nts’ her:r(]:e s gmb?b'“sgc and nor_1-greedy. They o
but use of these algorithms is presented next. The new O fameter s the number of random mappings.
algorithm is introduced in detail.

V. OPTIMAL SUBSETMAPPING (OSM
For each algorithm, tasks are initially mapped to one PE. ()

The new Optimal Subset Mapping (OSM) algorithm takes a

A. Group Migration (GM) random subset of tasks and finds the optimum mapping in that

Group migration (GM), also known as Kernighan-Lin graplsubset by trying all possible mappings (brute-force sgarch
partitioning algorithm [9], is a deterministic algorithnhat This is called a round. Tasks outside the subset are lefaicepl
moves one task at time and finds an optimal mapping f&ISM is probabilistic because it chooses a subset randomly
that. It accepts only moves to a better state (one with small every round. It is also greedy because it only accepts an
cost). Therefore, it is greedy algorithm and may get stuck t@provement to the best known solution at each round. OSM
a local minimum. This happens when there is no single moagorithm was inspired by Sequential Minimal Optimization
that improves (decreases) the cost, and GM terminates. T(§O) algorithm [11]. SMO is used for solving a quadratic
algorithms does not need any parameters. The exact algoritarogramming problem and has a static subset siz, dfut
used here is presented in [2]. The worst case iteration deunthe subset size in OSM is dynamic during run-time. Also, the
in O((M —1)N?), whereM is the number of PEs an¥ the total number of iterations in OSM is bounded by task graph
number of tasks. A starting point near a local optimum wiknd architecture characteristics.

converge much more rapidly. The pseudo-code of OSM is shown in Fig. 1. Variable
]) . S denotes the current (mapping) statg, is the cost, X
B. Variants of Simulated Annealing (SA) is subset size, and? is a round number used to track

SA is a probabilistic non-greedy algorithm [10] that exprogress of the algorithm. FunctioBost(.S) evaluates the
plores search space of a problem by annealing from a highdast function for the mapping staté and minimum S is
a low temperature state. This paper uses two versions of Sdught. FunctionPick_Random.SubsetS, X) picks a ran-
that are presented in [2] and [3]. Algorithm performs randomlom subset ofX separate tasks from mappirffy Function
changes in mapping with respect to the current mapping. stad@ply _Mapping (S, Ss.;) takes whole mapping and subset

SA algorithm always accepts a move into a better state, baappingS;.,. It copies mappings fron¥,,; to S.
also into a worse state with a probability that decreasasgalo Initially, the subset sizeX = 2. If no improvement has
with the temperature. Thus the algorithm becomes greedimen found within lastR,,., = [ﬁ} rounds, the subset
on low temperatures. The acceptance probability functimh asize X is increased byl. If there was some improvement,
the number of iterations per temperature level is set by thé is decreased byi. The subset sizeX is bounded to
method presented in [2]. The annealing schedule functidX,,;,, X,naz], where X,,;, = 2. The algorithm terminates

OPTIMAL _SUBSET-MAPPING(S) TABLE |

1 Spest — S APPLICATION AND ARCHITECTURE PARAMETERS FOR THE EXPERIMENT
2 Cpest « COST(S) Variable (ot Value
3 X2
4 for R 1t # graphs 10
dOI’ c - 0 OOC # tasks per graph (V) 302
2 0 S"ld*’gst T Mbest £ |_# edges per graph O 11594, 5231, 8703
 Obest £ . (1)
&b t task 3.2,5.1.7.0
7 Subset — PICK_RANDOM_SUBSET(S, X) o lmle bt ask :‘S] O R
8 for all possible mappings Ssyp In Subset & {—comm vol per task [byte] 5 !
9 do S — APPLY_MAPPING(S, Ssus) comm/comp -ratio [Mbyte/s] 8,218, 526
=) su
10 C « CosT(S) max theor. parallelism [no unit] " 43.79.12.8
11 if C'< Chest # PEs (M) 2.4.8
12 then Syesr — S § PE freq [MHz] 50
13 Chest — C £ |_Bus Freq [MHz] © 10, 20, 40
14 if modulo(R, Ryaz) =0 ; Bus width [bits] 32
15 then if Chest = Cotd_pest = |_Bus bandwidth [Mb/s] @1 320, 640, 1280
16 then if X = X040 Bus arb. latency [cycles/send] 8
17 then break # runs per graph per alg ® 10
18 X—X+1 z algorithms 6
19 else X — X -1 £ determ, non-greedy 1: OSM
20 X — MAX (Xmin, X) ;50 determ, greedy 1. GM
o . n
21 X — MIN(X a4z, X) = stoch., non-greedy 4: SA, SA¥AT,
22 return Spest - - hybrid. random
stoch, greedy -
Fig. 1. Pseudo-code of Optimal Subset mapping algorithm.
g p pping alg Notes.

1 .
(O min, avg, max

@ = values for 2.4.8 PEs, respectively

when none of the lasR,,,, rounds improved the solution ® Z only 1 run for GM

and maximum subset size is reachéd € X,,,,..).
Upper bound for subset siZ¢ is needed to limit the number

of iterations. It can be derived as L
well be relevant for common applications, but they are dange

MX = NN Mem (2) ously biased for general algorithm comparison. Investigat
) _ algorithm bias and classifying computational tasks based o
whereV is the number of tasks anif’ is the number of PES. o hiag are outside the scope of this paper. Random graphs

¢, cy andcy are arbitrary positive coefficients used to limit e the property to be neutral of the application. The task
|te_rat|ons with respect to system size defined Myand M. graphs are summarized in Table | along with HW platform
It is recommended thaty, c); > 1 to reach acceptably 9°°dand measurement setup.

results. Solution to (2) is i ,
The SoC platform is a message passing system where each
Xypow = Llog(c) +enlog(N) + em log(M”. (3) PE has some local memory, but no shared memory. Each graph
log M was distributed ont®, 4 and 8 identical PEs. The PEs are

As a consequence, the number of iterations increasesirdgrconnected with a single, dynamically arbitrated stdius
N and M increase. The total number of mappings fof,., that limits the SoC performance due to bus contention. Bus

rounds is in frequency is low in order to highlight the differences betwe
(N1ten pfem)) algorithms when HW resources are very limited. However, bus
log N +log M " frequency is scaled with system size, as shown.

V. EXPERIMENT SETUP Total of 6 algorithms are compared. Optimization was run
The experiment uses0 random graphs witr800 nodes 10 times independently for each task graph, except with GM

from the Standard Task Graph set [5]. The communicatididt néeds onhi run due to its deterministic behavior. The
weights were generated randomly from uniform distributiofPPtimization s_oftware was _ertten in C language an_d exed:u_te
The resultingcommunication-to-computatianatios varied be- On @10-machine Gentoo Linux cluster, each machine having
tween graphs. The minimum, average and maximum byt&sSingle2.8 GHz Intel Pegmum 4 processor ardGiB of

for tasks in graphs ar&.1 Mbyte/s, 217.8 Mbyte/s, 525.6 memory. A total of2 - 10° mappings were t”%'@f?
Mbyte/s. This is the rate at which tasks will produce data fPMPutation hours7g days) leading to average7 ===
these graphs. Random graphs are used to evaluate optonizati The optimization parameters of the experiment are shown

algorithms as fairly as possible. Non-random applicatimay in Table II.

TABLE Il

e O Rand oGM OOSM w03
OPTIMIZATION PARAMETERS FOR THE EXPERIMENT 40T msA " WSAAT OHybrid . geg
[3e]
" 3.5 - 3 - § H
Alg. Variable (not Value o —
3.0 5 % -R— H
#iterper T, (L= N (M-1)) 602, 1208, 2416 e8 58S
temperature levels 181 E 2.5 . i
temperature scaling g=0.95 2,0l % R e | © Ll
range of T (SA and hybrid) 7,=1.0, T,=0.0001 < a
SASS\,T range of T (SA+AT) T range coefficient k=2 © 157 I
Iberid’ annealing schedule (T, i) Ty q””“ml/ 1.0 1 i
move heuristic move | random task 05 i
ac > ~t1 -1
acceptance function (1 +exp(AC /(0.5 Cy ;-E)T 00 ‘ ! I
end condition o 2PEs 4 PEs 8 PEs

AND L rejected moves

Algortihms, Num PEs

Rand | #imas interition 262 144 Fig. 2. Achieved gain averaged oved STGs.
GM no params needed
coefficient ¢ 1.0
exponent ¢ y 1.0 i . L. . . . i
OSM |_exponent ¢, 1.0 the time for running an optimization algorithm is directly
subset size X [#tasks] o 9.5.3 proportional to the number of iterations when graph siWe
iterations per subset 0 512,1024, 512 and the architecture siz& are fixed. lterations are shown on
Notes: a logarithmic scale and the fir$t000 evaluations are omitted
= values for 2.4.8 PEs, respectively from the figure_
=T and T; computed automatically in SA+AT GM needs many iterations to achieve any speedup but once
that occurs the speedup increases very rapidly. A total sifgpo
VI. RESULTS is the new OSM algorithm. It reaches almost the maximum

X§peedup level with very limited number of iterations. SA,

For simplicity, the cost function considers only the e id i h h
ecution time. Hence, gain equals speedup and speedup>istAT and Hybrid lie between these extremes, and they

defined as'-, wheret; is the graph execution time GrPEs. achieve the highest overall speedup. L
The results are discussed according to average gain, pEogre Random mapping saturates quickly and further iteratioas ar

of gain with respect to required iterations, and differemcémable_to provi_de any speedup. .
between graphs. Hybrid algorithm converges very slowly due to a simple

but inefficient temperature schedule. But once it is in the
A. Gain right temperature range@ 000 iterations), it converges up

Figure 2 shows averaged speedups for each algorithm. RYRY rapidly. SA+AT has an optimized temperature range
dom mapping is clearly the worst algorithm and the diffeaenéhat starts rapid convergence aIread;Q@dO_OO iterations and_
between it and others grows with the number of PEs. Oth&aches the maximum before the Hybrid starts converging.
5 algorithms have almost equal performance, Hybrid bei:g‘le Hybrid algorithm does many independent annealings in
marginally better than others and GM and OSM slightly worddfferent temperature ranges, and also uses group migratio
than others. SA, SA+AT and Hybrid are only marginally"‘”d thus reaches a slightly h.|gher maximum than SA+AT. If
different in gain, from0.01 to 0.04 gain units difference. normal SA were plotted on Figure 3, it would follow Hybrid

The average speedup grows with system size. FBEs algorithm exactly till 380 000 iterations, because Hybrid
total PE utilization varied froni77% to 99.7%. For 4 PEs, a/gorithm begins with a normal SA.
from 52% to 76%. And, for 8 PEs, from37% to 51%. C. Trade-off between gain and required iterations
Interconnect utilization was nearly00% as parallelization Clearly, algorithms proceed at different speeds, i.e. gain

IS communication .boundeq. Therefore, 'the gains are Cleam(:reases with varying slope. The average slope is defined as
lower than theoretical maximum parallelism. Average teeor

ical maximum parallelism ig.9 for these graphs. It is defined average_gain_slope = — I

by dividing the sum of computation times by the computation friterations

time of the critical path and neglecting the communicatiolt defines how much the gain increases with one iteration on
costs. average.

Variance in gain values is small, but there is a notable Figure 4 shows the average gain slope values of algo-
difference in the number of iterations that algorithms megju rithms relative to that of random mapping. Random mapping
during optimization. This will be analyzed next. algorithm was chosen to be a reference to measure ease
of parallelization. The slopes of GM and Hybrid decrease
rapidly with system size, i.e. they spend rapidly incregsin

Figure 3 shows the averaged speedups with respecttitoe with larger systems. Considering this trade-off beme
number of iterations fo8 PE system. The results witd optimization result and time needed, OSM and SA+AT are the
and 4 PEs are similar but omitted for brevity. Note thabest algorithms.

B. Time behavior of algorithms

4 ‘ ‘ ‘ 14 7 O Random oGM oosM mSA B SA+AT O Hybrid

OSM

‘11.46

o~ SA+AT SA+AT\’/,” -
35F = = = Hybrid 4 !

-+ Random OosM / ! Hybrid
GM

w
T

]6,11

pe(x) / Gain_slope (rand), [no unit]

Gain_slo

N
T

Average gain (speedup)
N
B

0.20

:
15¢ 2 PEs 4 PEs 8 PEs

Number of PEs

Fig. 4. The best gain divided by the number of iterations. ¥galare relative
to random mapping.

.
10 10 10° 10°

Mapping iterations (log scale)
Fig. 3. Evolution of gain with respect to number of iteratiomish 8 PEs.

TABLE IlI become visible already at small iteration counts whereas
ROUNDS AND MAPPING ITERATIONS FOROSM they are observed only at the end with OSM and GM. The
PEs rounds Thousands of difference in iteration counts between graphs varied attmos

(min, avg, max) | iterations (min, avg, max by factor of3 for OSM, due to its subset size changing policy.
371, 380, 611 341,372, 73.6

i 530, 469, 899 806, 1154 2501 Other algorithms were varied much less than that.

] [199, 428, 1099 57.1, 83.8, 203.9 It turned out that the same graphs performed worse with
every algorithm. The studied graphs varied in terms of con-
nectivity and branching (number of edges) and computation

.) amount. We carefully analyzed the correlation between the
For 4 PEs, OSM algorithm i23%, 48%, —23% and951% qaiic properties of task graphs and achieved gain. However
more efficient than GM, SA, SA+AT and Hybrid, respectively,, ¢4;sa] relation was found. For example, the two worst

Efficiency is defined as achieved gain divided by the number&faphS had many edgeg109 and 8703) but the best had
mapping iterations needed. The save in Wa," clock o_ptlmmat also many 7515). It is our optimistic hope that the presented
time are20%, 35%, —25% and91%, respectively. This makes results therefore present the “general” case as well.

SA+AT a clear winner because it is orh03 gain units slower
than Hybrid, but noticeably the fastest. E. Discussion

For 8 PEs, OSM algorithm isi05%, 330%, 137% and The Hybrid algorithm reaches the best speedup, but it is
2955% more efficient in average gain slope compared to GMnly marginally better than other SA variants. GM and OSM
SA, SA+AT and Hybrid, respectively. The save in wall cloclgre clearly worse i3 PE case, but do almost as well2rand
optimization time are31%, 79%, 62% and97%, respectively. 4 PE cases. This shows that Hybrid and SA variants are more
That is, OSM is very efficient. However, SA+AT hasla% scalable than OSM and GM. However, in terms of average
or 0.40 units higher gain number than OSM, which makegain slope, OSM and SA+AT the most scalable algorithms
SA+AT a very good candidate for tePE case. (see Section VI-C).

Table 11l shows rounds and iterations for OSM algorithm. Hybrid and SA converge so slowly that they are useless
The average number of rounds varies fr@80 to 469 due for large scale architecture exploration. SA+AT is as gosd a
to its parameter selection scheme, and the average numbesafin speedup but converges much more rapidly due to its
iterations scales up with the number of processors. parameter selection method. GM converges slowly compared
to SA variants. OSM converges very rapidly, and therefore
we suggest to use it early in the exploration. However, its

There are differences in obtained gain depending on tfieal result is not as high as SA, which possibly means that
graph. The progress of OSM, SA+AT and GM for each gramother algorithm should continue after OSM, or OSM should
is shown in Figure 5. Each line represents different grapbe improved.

Results are fol8 PEs. OSM starts saturating always at the Hybrid and SA variants are insensitive to initial values
same point, aftet0* iterations, for every graph, as illustratecdue to their random nature in high temperatures. GM is
in Figure 5(a). However, the gains differ at masi0% (gain highly sensitive to initial values due to its deterministind

of 3.7 vs 2.5). Both GM and SA+AT had similar difference greedy nature, and therefore we advice against using ibwith
between the best and worst case graphs. SA+AT achieves itidependent runs from different initial values. Effect oftial
largest speedup among algorithms at the beginning (itersiti values to OSM is an open question, but it is reasonable to
1 - 1 000) due to its random mapping style in the beginningssume it depends on the maximum subset size and graph
of annealing. Consequently, the differences between graptructure.

D. Differences between the graphs

3.5

Gain (speedup)
& w

N

15

! !

10* 10° 10°

Mapping iterations

(a) OSM progress

351

w
T

Gain (speedup)
N
(%))

N
T

15F

10 10 10°
Mapping iterations

(b) SA+AT progress

351

Gain (speedup)
& w

N
T

15

Fig. 5. OSM, SA+AT and GM progress plotted for each graph.

Mapping iterations

(c) GM progress

VIl. CONCLUSION

This paper presented a new mapping algorithm, Optimal
Subset Mapping (OSM), and it is compared5stather algo-
rithms. OSM was developed to make architecture exploration
faster. The results show large differences on the number or
required iterations during the optimization so that OSM is
a strong candidate for a rapid mapping algorithm when the
number of iterations is taken into account. Simulated alimga
with automatic temperature selection (SA+AT) gives nearly
the best gain with reasonable effort, but OSM is faster in
convergence. When only the speedup is measured, differences
are small among algorithms.

Also, the paper presented convergence propertiésabdo-
rithms with respect to iteration number, number of processo
and different random graphs. Convergence properties of OSM
and GM have opposite behavior and SA comes between these
two. The convergence figures presented in this paper should
help architecture explorers choose a suitable algorithrtafk
mapping. OSM and SA+AT are the recommended choices of
these algorithms.

Future research should try to integrate rapid convergence
properties of OSM to other algorithms, create a non-greedy
version of OSM to have similar advantages as SA+AT, increase
the granularity of subsets of tasks (map several subsetsks t
optimally, instead of mapping a subset of tasks optimaépy
analyze the relation between graph properties and gain.

REFERENCES

[1] Y.-K. Kwok and |. Ahmad,Static scheduling algorithms for allocating
directed task graphs to multiprocessp®SCM Comput. Surv., Vol. 31,
No. 4, pp. 406-471, 1999.

[2] H. Orsila, T. Kangas, E. Salminen, M.adnilainen, T. D. Ham&lainen,
Automated Memory-Aware Application Distribution for Mtrocessor
System-On-ChipsJournal of Systems Architecture, 2007, Elsevier, In
print.

[3] H. Orsila, T. Kangas, E. Salminen, T. D.aHalainen, Parameterizing
Simulated Annealing for Distributing Task Graphs on mudigessor
SoCs International Symposium on System-on-Chip (SoC 2006), Tam-
pere, Finland, November 14-16, 2006, pp. 73-76.

[4] H. Orsila, T. Kangas, T. D. Bmalainen,Hybrid Algorithm for Mapping
Static Task Graphs on Multiprocessor So@sternational Symposium
on System-on-Chip (SoC 2005), pp. 146-150, 2005.

[5] Standard task graph sefonline]:
http://lwww.kasahara.elec.waseda.ac.jp/schedule,.2003

[6] T. D. Braun, H. J. Siegel, N. BeckA Comparison of Eleven Static
Heuristics for Mapping a Class if Independent Tasks onte@tbefeneous
Distributed SystemdEEE Journal of Parallel and Distributed Comput-
ing, Vol. 61, pp. 810-837, 2001.

[7] G. Kahn,The semantics of a simple language for parallel programming
Information Processing, pp. 471-475, 1974.

[8] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M.ahhildinen,
T.D. Hamélainen, J. Riihindki, K. Kuusilinna, UML-based Multi-
Processor SoC Design Frameworkransactions on Embedded Com-
puting Systems, ACM, 2006.

[9] B.W. Kernighan, S. Lin,An Efficient Heuristics Procedure for Parti-
tioning Graphs The Bell System Technical Journal, Vol. 49, No. 2, pp.
291-307, 1970.

[10] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchptimization by simulated
annealing Science, Vol. 200, No. 4598, pp. 671-680, 1983.

[11] J. Platt,Sequential Minimal Optimization: A Fast Algorithm for Tinéng
Support Vector MachingdMlicrosoft Research Technical Report MSR-
TR-98-14, 1998.

