
Optimal Subset Mapping And Convergence
Evaluation of Mapping Algorithms for Distributing

Task Graphs on Multiprocessor SoC
Heikki Orsila, Erno Salminen, Marko Ḧannik̈ainen, Timo D. Ḧamäläinen

Institute of Digital and Computer Systems
Tampere University of Technology

P.O. Box 553, 33101 Tampere, Finland
Email: {heikki.orsila, erno.salminen, marko.hannikainen, timo.d.hamalainen}@tut.fi

Abstract— Mapping an application on Multiprocessor System-
on-Chip (MPSoC) is a crucial step in architecture exploration.
The problem is to minimize optimization effort and application
execution time. Applications are modeled as static acyclic task
graphs which are mapped to an MPSoC. The analysis is based on
extensive simulations with300 node graphs from the Standard
Graph Set.

We present a new algorithm, Optimal Subset Mapping (OSM),
that rapidly evaluates task distribution mapping space, and then
compare it to simulated annealing (SA) and group migration
(GM) algorithms. OSM was developed to make architecture
exploration faster. Efficiency of OSM is 5.0× and 2.4× than
that of GM and SA, respectively, when efficiency is measured
as the application speedup divided by the number of iterations
needed for optimization. This saves81% and 62% in wall
clock optimization time, respectively. However, this is a trade-
off because OSM reaches96% and 89% application speedup
compared to GM and SA. Results show that OSM and GM have
opposite convergence behavior and SA comes between these two.

I. I NTRODUCTION

An efficient MPSoC implementation requires exploration to
find an optimized architecture as well as mapping and schedul-
ing of the application. A large design space must be pruned
systematically, since the exploration of the whole design space
is not feasible. However, fast optimization procedure is desired
in order to cover reasonable design space. Iterative algorithms
evaluate a number of application mappings for each resource
allocation candidate. For each mapping, an application sched-
ule is determined to evaluate the cost. The cost function
may consider multiple parameters, such as execution time,
communication time, memory, energy consumption and silicon
area constraints.

SoC applications can be modeled as acyclic static task
graphs (STGs) [1]. Nodes of the STG are finite, deterministic
computational tasks, and edges denote dependencies between
the nodes. Node weights represent the amount of computation
associated with a node. Edge weights model the amount of
communication needed to transfer results between the nodes.
Computational nodes block until their data dependencies are
resolved, i.e. when they have all needed data. Details of the
task graph parallelization system employed in this paper can
be found in [2].

This paper presents a new mapping algorithm called Op-
timal Subset Mapping (OSM) to speedup architecture explo-
ration. It is compared to two variants of Simulated Annealing
algorithm (SA and SA+AT) [2][3], Group Migration (GM),
and their combination (Hybrid) [4]. Furthermore, a random
algorithm is used as basis for comparison. The system has
2, 4, or 8 identical processing elements (PEs). Ten random
300-node STGs are selected from [5].

II. RELATED WORK

Braun et al. [6] compared11 optimization algorithms for
distribution of tasks without data dependencies.512 tasks were
parallelized onto16 machines and total execution time was
measured for each heuristics. Our system schedules300 tasks
with data dependencies for8 PEs. It must also be noted that
our tasks have10 times more edges than tasks in [6]. They do
approximately3 000 mappings for each SA run, which can
be shown to be far too few for16 machines and512 tasks in
the case that tasks are dependent [2]. Our SA implementation
does approximately200 000 mappings for a single run with
dependent tasks. Their paper does not present convergence
properties of SA as a function of iterations, and we are not
aware of related work that measures SA convergence for task
mapping with respect to iterations and the number of PEs.

Our earlier work [3] presented a heuristics for automatically
selecting temperature schedule for SA to speedup convergence
of dependent tasks. Also, [2] presented heuristics to select
total iteration number for reasonable efficiency for SA with
dependent tasks. This paper will merge those results and
compare them to various mapping algorithms, including the
new OSM.

III. STUDIED ALGORITHMS

The mapping algorithms can be classified as follows. First,
is the algorithm deterministic (same results on every inde-
pendent run) or probabilistic (result varies between runs).
Second, does algorithm accept a move to worse state along
the run (non-greedy) or only better moves (greedy). Hence,4
categories can be identified.

Architecture exploration needs an automatic selection of
optimization parameters depending on the architecture andap-
plication sizes. Otherwise, an algorithm may spend excessive
time optimizing a small systems or result in a sub-optimal
solution for a large system. The goal is to avoid unnecessary
optimization iterations, while keeping application performance
close to architecture limits. This will save optimization time
and thus speed up architecture exploration.

The term move means here the change of the location
(PE) of one or multiple tasks. All studied algorithms (except
random) ensure that move is always made to a different PE,
which saves many iterations. This is a crucial detail forgotten
in many papers. For example, randomizing a single task for2
PEs will result in50% of iterations being useless because the
task is not actually moved anywhere.

STGs are used because there exists well known efficient and
near optimal scheduling algorithms for them. This ensures that
the observed differences are due to mapping. Harder schedul-
ing properties would diminish accuracy of mapping analysis.
All presented algorithms are agnostic of STG structure, andso
they will also work with general process networks like Kahn
Process Networks (KPN) [7]. These algorithms are also used
in our Koski flow, that has a KPN-like process network [8].
Koski is a high-level design tool for multiprocessor SoCs and
applications.

Details of the used algorithms can be found in [2][3][4]
but use of these algorithms is presented next. The new OSM
algorithm is introduced in detail.

For each algorithm, tasks are initially mapped to one PE.

A. Group Migration (GM)

Group migration (GM), also known as Kernighan-Lin graph
partitioning algorithm [9], is a deterministic algorithm that
moves one task at time and finds an optimal mapping for
that. It accepts only moves to a better state (one with smaller
cost). Therefore, it is greedy algorithm and may get stuck to
a local minimum. This happens when there is no single move
that improves (decreases) the cost, and GM terminates. This
algorithms does not need any parameters. The exact algorithm
used here is presented in [2]. The worst case iteration countis
in O((M −1)N2), whereM is the number of PEs andN the
number of tasks. A starting point near a local optimum will
converge much more rapidly.

B. Variants of Simulated Annealing (SA)

SA is a probabilistic non-greedy algorithm [10] that ex-
plores search space of a problem by annealing from a high to
a low temperature state. This paper uses two versions of SA
that are presented in [2] and [3]. Algorithm performs random
changes in mapping with respect to the current mapping state.

SA algorithm always accepts a move into a better state, but
also into a worse state with a probability that decreases along
with the temperature. Thus the algorithm becomes greedier
on low temperatures. The acceptance probability function and
the number of iterations per temperature level is set by the
method presented in [2]. The annealing schedule function,

initial temperatureT0 and the final temperatureTf are selected
by the method in [3]. The algorithm terminates when the final
temperature is reached and sufficient number of consecutive
moves have been rejected.

The basic version of simulated annealing is referred here as
SA and one with automatic temperature selection asSA+AT.
In general, SA+AT achieves nearly the same performance as
SA but in considerably fewer iterations. The Hybrid algorithm
[4] uses SA for initial optimization and finishes the mapping
with GM. The parameters for SA variants are temperature
range (initial and final), number of temperature levels, scaling
between levels, and number of iteration on each level. Further-
more, move heuristic, acceptance function, and end condition
must be defined.

The total number of iterations for SA is

(
log

Tf

T0

log q
+ 1)N(M − 1), (1)

whereq is the temperature scaling factor [2].

C. Random

A simple random mapping algorithm is included just to
obtain basis for algorithm comparison. The algorithm tries
random mappings without regarding the results from previous
iterations, hence it is probabilistic and non-greedy. The only
parameter is the number of random mappings.

IV. OPTIMAL SUBSET MAPPING (OSM)

The new Optimal Subset Mapping (OSM) algorithm takes a
random subset of tasks and finds the optimum mapping in that
subset by trying all possible mappings (brute-force search).
This is called a round. Tasks outside the subset are left in place.
OSM is probabilistic because it chooses a subset randomly
at every round. It is also greedy because it only accepts an
improvement to the best known solution at each round. OSM
algorithm was inspired by Sequential Minimal Optimization
(SMO) algorithm [11]. SMO is used for solving a quadratic
programming problem and has a static subset size of2, but
the subset size in OSM is dynamic during run-time. Also, the
total number of iterations in OSM is bounded by task graph
and architecture characteristics.

The pseudo-code of OSM is shown in Fig. 1. Variable
S denotes the current (mapping) state,C is the cost,X
is subset size, andR is a round number used to track
progress of the algorithm. FunctionCost(S) evaluates the
cost function for the mapping stateS and minimum S is
sought. FunctionPick Random Subset(S,X) picks a ran-
dom subset ofX separate tasks from mappingS. Function
Apply Mapping(S, Ssub) takes whole mappingS and subset
mappingSsub. It copies mappings fromSsub to S.

Initially, the subset sizeX = 2. If no improvement has
been found within lastRmax = ⌈ N

Xmax
⌉ rounds, the subset

size X is increased by1. If there was some improvement,
X is decreased by1. The subset sizeX is bounded to
[Xmin,Xmax], whereXmin = 2. The algorithm terminates

OPTIMAL SUBSET MAPPING(S)
1 Sbest ← S

2 Cbest ← COST(S)
3 X ← 2
4 for R← 1 to ∞
5 do Cold best ← Cbest

6 S ← Sbest

7 Subset← PICK RANDOM SUBSET(S,X)
8 for all possible mappings Ssub in Subset

9 do S ← APPLY MAPPING(S, Ssub)
10 C ← COST(S)
11 if C < Cbest

12 then Sbest ← S

13 Cbest ← C

14 if modulo(R,Rmax) = 0
15 then if Cbest = Cold best

16 then if X = Xmax

17 then break
18 X ← X + 1
19 else X ← X − 1
20 X ← MAX(Xmin,X)
21 X ← M IN(Xmax,X)
22 return Sbest

Fig. 1. Pseudo-code of Optimal Subset mapping algorithm.

when none of the lastRmax rounds improved the solution
and maximum subset size is reached (X = Xmax).

Upper bound for subset sizeX is needed to limit the number
of iterations. It can be derived as

MX = cN cN M cM , (2)

whereN is the number of tasks andM is the number of PEs.
c, cN and cM are arbitrary positive coefficients used to limit
iterations with respect to system size defined byN and M .
It is recommended thatcN , cM ≥ 1 to reach acceptably good
results. Solution to (2) is

Xmax = ⌊
log(c) + cN log(N) + cM log(M)

log M
⌋. (3)

As a consequence, the number of iterations increases as
N andM increase. The total number of mappings forRmax

rounds is in

O(
N1+cN M cM

log N + log M
). (4)

V. EXPERIMENT SETUP

The experiment uses10 random graphs with300 nodes
from the Standard Task Graph set [5]. The communication
weights were generated randomly from uniform distribution.
The resultingcommunication-to-computationratios varied be-
tween graphs. The minimum, average and maximum byte/s
for tasks in graphs are8.1 Mbyte/s, 217.8 Mbyte/s, 525.6
Mbyte/s. This is the rate at which tasks will produce data in
these graphs. Random graphs are used to evaluate optimization
algorithms as fairly as possible. Non-random applicationsmay

TABLE I

APPLICATION AND ARCHITECTURE PARAMETERS FOR THE EXPERIMENT

Value

graphs 10

tasks per graph (N) 302

edges per graph
(1)

1594, 5231, 8703

comp time per task [us]
(1)

3.2, 5.1, 7.0

comm vol per task [byte]
(1)

26, 1111, 3679

comm/comp -ratio [Mbyte/s]
(1)

8, 218, 526

max theor. parallelism [no unit]
(1)

4.3, 7.9, 12.8

PEs (M) 2, 4, 8

PE freq [MHz] 50

Bus Freq [MHz]
(2)

10, 20, 40

Bus width [bits] 32

Bus bandwidth [Mb/s]
(2)

320, 640, 1280

Bus arb. latency [cycles/send] 8

runs per graph per alg (3) 10

algorithms 6

 determ, non-greedy 1: OSM

 determ, greedy 1: GM

 stoch., non-greedy
4: SA, SA+AT,

hybrid, random

 stoch, greedy -

Notes:
(1)

 = min, avg, max
(2)

 = values for 2,4,8 PEs, respectively
(3)

 = only 1 run for GM

 Variable
 (note)

T
as

k
 g

ra
p

h
s

H
W

 P
la

tf
o

rm
A

lg
o

ri
th

m
s

well be relevant for common applications, but they are danger-
ously biased for general algorithm comparison. Investigating
algorithm bias and classifying computational tasks based on
the bias are outside the scope of this paper. Random graphs
have the property to be neutral of the application. The task
graphs are summarized in Table I along with HW platform
and measurement setup.

The SoC platform is a message passing system where each
PE has some local memory, but no shared memory. Each graph
was distributed onto2, 4 and 8 identical PEs. The PEs are
interconnected with a single, dynamically arbitrated shared bus
that limits the SoC performance due to bus contention. Bus
frequency is low in order to highlight the differences between
algorithms when HW resources are very limited. However, bus
frequency is scaled with system size, as shown.

Total of 6 algorithms are compared. Optimization was run
10 times independently for each task graph, except with GM
that needs only1 run due to its deterministic behavior. The
optimization software was written in C language and executed
on a10-machine Gentoo Linux cluster, each machine having
a single2.8 GHz Intel Pentium 4 processor and1 GiB of
memory. A total of 2 · 109 mappings were tried in1869
computation hours (78 days) leading to average297mappings

s
.

The optimization parameters of the experiment are shown
in Table II.

TABLE II

OPTIMIZATION PARAMETERS FOR THE EXPERIMENT

Alg. Value

iter per T , (L= N· (M-1)) (1) 602, 1208, 2416

temperature levels 181

temperature scaling q =0.95

range of T (SA and hybrid) (2) T 0 = 1.0, T f =0.0001

range of T (SA+AT) T range coefficient k =2

annealing schedule (T 0 , i) T 0 · q
floor(i/L)

move heuristic move 1 random task

acceptance function (1 +exp(ΔC / (0.5 C 0 T))
-1

end condition
T=T f

AND L rejected moves

Rand # max interations 262 144

GM no params needed -

coefficient c 1.0

exponent c N 1.0

exponent c M 1.0

subset size X [#tasks] (1) 9, 5, 3

iterations per subset (1) 512, 1024, 512

Notes:
(1)

 = values for 2,4,8 PEs, respectively
(2)

 = T0 and Tf computed automatically in SA+AT

 Variable
 (note)

OSM

SA,

SA+AT,

Hybrid

VI. RESULTS

For simplicity, the cost function considers only the ex-
ecution time. Hence, gain equals speedup and speedup is
defined ast1

tM
, whereti is the graph execution time oni PEs.

The results are discussed according to average gain, progress
of gain with respect to required iterations, and differences
between graphs.

A. Gain

Figure 2 shows averaged speedups for each algorithm. Ran-
dom mapping is clearly the worst algorithm and the difference
between it and others grows with the number of PEs. Other
5 algorithms have almost equal performance, Hybrid being
marginally better than others and GM and OSM slightly worse
than others. SA, SA+AT and Hybrid are only marginally
different in gain, from0.01 to 0.04 gain units difference.

The average speedup grows with system size. For2 PEs,
total PE utilization varied from77% to 99.7%. For 4 PEs,
from 52% to 76%. And, for 8 PEs, from 37% to 51%.
Interconnect utilization was nearly100% as parallelization
is communication bounded. Therefore, the gains are clearly
lower than theoretical maximum parallelism. Average theoret-
ical maximum parallelism is7.9 for these graphs. It is defined
by dividing the sum of computation times by the computation
time of the critical path and neglecting the communication
costs.

Variance in gain values is small, but there is a notable
difference in the number of iterations that algorithms require
during optimization. This will be analyzed next.

B. Time behavior of algorithms

Figure 3 shows the averaged speedups with respect to
number of iterations for8 PE system. The results with2
and 4 PEs are similar but omitted for brevity. Note that

1
.8

4

1
.7

1

1
.7

6

1
.8

8

2
.6

1

3
.3

8

1
.8

8

2
.5

8

3
.2

5

1
.9

0

2
.6

7

3
.6

5

1
.9

0

2
.6

7

3
.6

5

1
.9

1

2
.7

0

3
.6

9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 PEs 4 PEs 8 PEs

Algortihms, Num PEs

G
a
in

 [
n
o
 u

n
it
]

Random GM OSM
SA SA+AT Hybrid

Fig. 2. Achieved gain averaged over10 STGs.

the time for running an optimization algorithm is directly
proportional to the number of iterations when graph sizeN

and the architecture sizeM are fixed. Iterations are shown on
a logarithmic scale and the first1 000 evaluations are omitted
from the figure.

GM needs many iterations to achieve any speedup but once
that occurs the speedup increases very rapidly. A total opposite
is the new OSM algorithm. It reaches almost the maximum
speedup level with very limited number of iterations. SA,
SA+AT and Hybrid lie between these extremes, and they
achieve the highest overall speedup.

Random mapping saturates quickly and further iterations are
unable to provide any speedup.

Hybrid algorithm converges very slowly due to a simple
but inefficient temperature schedule. But once it is in the
right temperature range (200 000 iterations), it converges up
very rapidly. SA+AT has an optimized temperature range
that starts rapid convergence already at20 000 iterations and
reaches the maximum before the Hybrid starts converging.
The Hybrid algorithm does many independent annealings in
different temperature ranges, and also uses group migration,
and thus reaches a slightly higher maximum than SA+AT. If
normal SA were plotted on Figure 3, it would follow Hybrid
algorithm exactly till 380 000 iterations, because Hybrid
algorithm begins with a normal SA.

C. Trade-off between gain and required iterations

Clearly, algorithms proceed at different speeds, i.e. gain
increases with varying slope. The average slope is defined as

average gain slope =
gain

#iterations
.

It defines how much the gain increases with one iteration on
average.

Figure 4 shows the average gain slope values of algo-
rithms relative to that of random mapping. Random mapping
algorithm was chosen to be a reference to measure ease
of parallelization. The slopes of GM and Hybrid decrease
rapidly with system size, i.e. they spend rapidly increasing
time with larger systems. Considering this trade-off between
optimization result and time needed, OSM and SA+AT are the
best algorithms.

10
3

10
4

10
5

10
6

1

1.5

2

2.5

3

3.5

4

Mapping iterations (log scale)

A
ve

ra
ge

 g
ai

n
(s

pe
ed

up
)

OSM

SA+AT

Hybrid

Random

GM

Random
GM

OSM

SA+AT

Hybrid

Fig. 3. Evolution of gain with respect to number of iterationswith 8 PEs.

TABLE III

ROUNDS AND MAPPING ITERATIONS FOROSM

PEs rounds Thousands of
(min, avg, max) iterations (min, avg, max)

2 271, 380, 611 34.1, 37.2, 73.6

4 239, 469, 899 80.6, 115.4, 259.1

8 199, 428, 1099 57.1, 88.8, 293.9

For 4 PEs, OSM algorithm is23%, 48%, −23% and951%
more efficient than GM, SA, SA+AT and Hybrid, respectively.
Efficiency is defined as achieved gain divided by the number of
mapping iterations needed. The save in wall clock optimization
time are20%, 35%,−25% and91%, respectively. This makes
SA+AT a clear winner because it is only0.03 gain units slower
than Hybrid, but noticeably the fastest.

For 8 PEs, OSM algorithm is405%, 330%, 137% and
2955% more efficient in average gain slope compared to GM,
SA, SA+AT and Hybrid, respectively. The save in wall clock
optimization time are81%, 79%, 62% and97%, respectively.
That is, OSM is very efficient. However, SA+AT has a12%
or 0.40 units higher gain number than OSM, which makes
SA+AT a very good candidate for the8 PE case.

Table III shows rounds and iterations for OSM algorithm.
The average number of rounds varies from380 to 469 due
to its parameter selection scheme, and the average number of
iterations scales up with the number of processors.

D. Differences between the graphs

There are differences in obtained gain depending on the
graph. The progress of OSM, SA+AT and GM for each graph
is shown in Figure 5. Each line represents different graph.
Results are for8 PEs. OSM starts saturating always at the
same point, after104 iterations, for every graph, as illustrated
in Figure 5(a). However, the gains differ at most+50% (gain
of 3.7 vs 2.5). Both GM and SA+AT had similar difference
between the best and worst case graphs. SA+AT achieves the
largest speedup among algorithms at the beginning (iterations
1 - 1 000) due to its random mapping style in the beginning
of annealing. Consequently, the differences between graphs

1
.0

0

1
.0

0

1
.0

0

1
1
.4

6

2
.9

8

1
.2

1

7
.2

4

3
.6

8

6
.1

1

4
.9

4

2
.4

9

1
.4

2

9
.7

5

4
.7

5

2
.5

8

0
.6

8

0
.3

5

0
.2

0

0

2

4

6

8

10

12

14

2 PEs 4 PEs 8 PEs

Number of PEs

G
a
in

_
s
lo

p
e
(x

)
/

G
a
in

_
s
lo

p
e
 (

ra
n
d
),

 [
n
o
 u

n
it
]

Random GM OSM SA SA+AT Hybrid

Fig. 4. The best gain divided by the number of iterations. Values are relative
to random mapping.

become visible already at small iteration counts whereas
they are observed only at the end with OSM and GM. The
difference in iteration counts between graphs varied at most
by factor of3 for OSM, due to its subset size changing policy.
Other algorithms were varied much less than that.

It turned out that the same graphs performed worse with
every algorithm. The studied graphs varied in terms of con-
nectivity and branching (number of edges) and computation
amount. We carefully analyzed the correlation between the
static properties of task graphs and achieved gain. However,
no causal relation was found. For example, the two worst
graphs had many edges (7109 and 8703) but the best had
also many (7515). It is our optimistic hope that the presented
results therefore present the “general” case as well.

E. Discussion

The Hybrid algorithm reaches the best speedup, but it is
only marginally better than other SA variants. GM and OSM
are clearly worse in8 PE case, but do almost as well in2 and
4 PE cases. This shows that Hybrid and SA variants are more
scalable than OSM and GM. However, in terms of average
gain slope, OSM and SA+AT the most scalable algorithms
(see Section VI-C).

Hybrid and SA converge so slowly that they are useless
for large scale architecture exploration. SA+AT is as good as
SA in speedup but converges much more rapidly due to its
parameter selection method. GM converges slowly compared
to SA variants. OSM converges very rapidly, and therefore
we suggest to use it early in the exploration. However, its
final result is not as high as SA, which possibly means that
another algorithm should continue after OSM, or OSM should
be improved.

Hybrid and SA variants are insensitive to initial values
due to their random nature in high temperatures. GM is
highly sensitive to initial values due to its deterministicand
greedy nature, and therefore we advice against using it without
independent runs from different initial values. Effect of initial
values to OSM is an open question, but it is reasonable to
assume it depends on the maximum subset size and graph
structure.

10
3

10
4

10
5

10
6

1

1.5

2

2.5

3

3.5

4

Mapping iterations

G
ai

n
(s

pe
ed

up
)

0
1
2
3
4
5
6
7
8
9

(a) OSM progress

10
3

10
4

10
5

10
6

1

1.5

2

2.5

3

3.5

4

Mapping iterations

G
ai

n
(s

pe
ed

up
)

0
1
2
3
4
5
6
7
8
9

(b) SA+AT progress

10
3

10
4

10
5

10
6

1

1.5

2

2.5

3

3.5

4

Mapping iterations

G
ai

n
(s

pe
ed

up
)

0
1
2
3
4
5
6
7
8
9

(c) GM progress

Fig. 5. OSM, SA+AT and GM progress plotted for each graph.

VII. C ONCLUSION

This paper presented a new mapping algorithm, Optimal
Subset Mapping (OSM), and it is compared to5 other algo-
rithms. OSM was developed to make architecture exploration
faster. The results show large differences on the number or
required iterations during the optimization so that OSM is
a strong candidate for a rapid mapping algorithm when the
number of iterations is taken into account. Simulated annealing
with automatic temperature selection (SA+AT) gives nearly
the best gain with reasonable effort, but OSM is faster in
convergence. When only the speedup is measured, differences
are small among algorithms.

Also, the paper presented convergence properties of5 algo-
rithms with respect to iteration number, number of processors
and different random graphs. Convergence properties of OSM
and GM have opposite behavior and SA comes between these
two. The convergence figures presented in this paper should
help architecture explorers choose a suitable algorithm for task
mapping. OSM and SA+AT are the recommended choices of
these algorithms.

Future research should try to integrate rapid convergence
properties of OSM to other algorithms, create a non-greedy
version of OSM to have similar advantages as SA+AT, increase
the granularity of subsets of tasks (map several subsets of tasks
optimally, instead of mapping a subset of tasks optimally),and
analyze the relation between graph properties and gain.

REFERENCES

[1] Y.-K. Kwok and I. Ahmad,Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surv., Vol. 31,
No. 4, pp. 406-471, 1999.

[2] H. Orsila, T. Kangas, E. Salminen, M. Hännik̈ainen, T. D. Ḧamäläinen,
Automated Memory-Aware Application Distribution for Multi-Processor
System-On-Chips, Journal of Systems Architecture, 2007, Elsevier, In
print.

[3] H. Orsila, T. Kangas, E. Salminen, T. D. Hämäläinen,Parameterizing
Simulated Annealing for Distributing Task Graphs on multiprocessor
SoCs, International Symposium on System-on-Chip (SoC 2006), Tam-
pere, Finland, November 14-16, 2006, pp. 73-76.

[4] H. Orsila, T. Kangas, T. D. Ḧamäläinen,Hybrid Algorithm for Mapping
Static Task Graphs on Multiprocessor SoCs, International Symposium
on System-on-Chip (SoC 2005), pp. 146-150, 2005.

[5] Standard task graph set, [online]:
http://www.kasahara.elec.waseda.ac.jp/schedule, 2003.

[6] T. D. Braun, H. J. Siegel, N. Beck,A Comparison of Eleven Static
Heuristics for Mapping a Class if Independent Tasks onto Heterogeneous
Distributed Systems, IEEE Journal of Parallel and Distributed Comput-
ing, Vol. 61, pp. 810-837, 2001.

[7] G. Kahn,The semantics of a simple language for parallel programming,
Information Processing, pp. 471-475, 1974.

[8] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännik̈ainen,
T.D. Hämäläinen, J. Riihim̈aki, K. Kuusilinna, UML-based Multi-
Processor SoC Design Framework, Transactions on Embedded Com-
puting Systems, ACM, 2006.

[9] B.W. Kernighan, S. Lin,An Efficient Heuristics Procedure for Parti-
tioning Graphs, The Bell System Technical Journal, Vol. 49, No. 2, pp.
291-307, 1970.

[10] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi,Optimization by simulated
annealing, Science, Vol. 200, No. 4598, pp. 671-680, 1983.

[11] J. Platt,Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines, Microsoft Research Technical Report MSR-
TR-98-14, 1998.

