The collection consists of a C library for reading and writing bencoded data, and a Python implementation of bencode included with 'typevalidator' that can be used to verify typing and contents of bencoded messages.
#include <bencodetools/bencode.h>into your C module and linking the program with '-lbencodetools'.
List of releases:
# type validator documentation as a commented source code :-) from bencode.py import fmt_bdecode from typevalidator import validate, ANY, ZERO_OR_MORE, ONE_OR_MORE, OPTIONAL_KEY # Syntax of validate: validate(specification, object) # Syntax of fmt_bdecode: fmt_bdecode(specification, blob) # # Blob is first transformed to an object with bdecode, then validated with # type validator. This can be done with one call with fmt_bdecode() # Asserted examples with type validator: # Demand a dictionary whose keys and values are strings: assert validate({str: str}, {'name': 'Cheradenine'}) assert validate({str: str}, {1: 'Cheradenine'}) == False assert validate({str: str}, {'name': 1}) == False # Demand a dictionary whose keys are integers but values may have any # (supported) type. Furthermore, key with value 123 must exist. assert validate({int: ANY, 123: ANY}, {123: 'x'}) assert validate({int: ANY, 123: ANY}, {123: 456}) assert validate({int: ANY, 123: ANY}, {4: 'x'}) == False # 123 does not exist # List may begin with ZERO_OR_MORE or ONE_OR_MORE to specify that minimum # length of the list is either zero or one, respectively. If either is # used, then also a type must be specified after this. assert validate([ZERO_OR_MORE, ANY], []) assert validate([ONE_OR_MORE, ANY], ['x']) assert validate([ONE_OR_MORE, ANY], []) == False assert validate([ONE_OR_MORE, str], ['x', 1]) == False # Recursive data structures are easy to specify! Define a list of # dictionaries. assert validate([ZERO_OR_MORE, {'name': str}], [{'name': 'User1'}, {'name': 'User2'}]) assert validate([ZERO_OR_MORE, {'name': str}], [1, {'name': 'User1'}]) == False # Define a list that contains one string and one dictionary: assert validate([str, {}], ['foo', {}]) assert validate([str, {}], [1, {}]) == False assert validate([str, {}], ['foo', 1]) == False assert validate([str, {}], ['foo', {}, 3]) == False # Too long a list # Extra keys are allowed in the dictionary. Even if only 'x' key is specified, # other keys are allowed. This was a choice to make message protocols # extensible. assert validate({'age': int}, {'age': 1, 'other': 'stuff'}) # Require positive integers by using lambdas assert validate({'x': lambda x: type(x) == int and x > 0}, {'x': -1}) == False # bencode example blob = read_from_socket() if blob == None: return specification = {'name': str, OPTIONAL_KEY('email'): str, OPTIONAL_KEY('age'): int, 'a-list': [], 'non-empty-string-list': [ONE_OR_MORE, str], } msg = fmt_bdecode(specification, blob) if msg == None: # Invalid object return # Now it is guaranteed that msg is a dictionary with previous specification. # msg['name'] exists, msg['email'] and msg['age'] may exist. # If msg['email'] exists, it is a string. If msg['age'] exists, it is an # integer. 'a-list' exists and it is # a list, but nothing is specified about type inside the list. # msg['non-empty-string-list'] exists, and it is a non-empty list that # contains strings.
Thanks to Janne Kulmala for the idea of using Python's iterators and type system in syntax.