
Used tools and mechanisms in

Open Source projects

(a school seminar work)

Heikki Orsila <heikki.orsila@iki.fi>

2007-03-08

This document may be used and distributed under GNU Free Documen-
tation (http://www.gnu.org/copyleft/fdl.html) and/or Commons Attribution-
Share Alike 2.5 (http://creativecommons.org/licenses/by-sa/2.5/) license con-
ditions.

0-0

1 Outline

• Present some common tools and mechanisms used in developing Open
Source projects

• Focuses on GNU/Linux and UNIX-like operating systems, other oper-
ating systems are ignored

• Focuses on C language tools, since C is the dominant language used in
Open Source operating systems

• Presents only Open Source tools

• The purpose is to only present most popular tools and most common
mechanisms in development

• This document was created from following information sources:

– Freshmeat : http://freahmeat.net is an excellent source for finding
UNIX programs by category, see http://freshmeat.net/browse/18/

0-1

– Wikipedia

– Google

– Personal experience ;)

– Acquaints from IRCNet ;)

0-2

• Topics of this presentation are:

– Section 2: Compilers and linkers

– Section 3: Interpreted languages

– Section 4: Source code tools

– Section 5: Debugging tools

– Section 6: Documentation tools

– Section 7: Version control tools

– Section 8: Text editors

– Section 9: Building tools

– Section 10: Integrated development environments (IDEs)

– Section 11: Reverse engineering tools

– Section 12: Compression, cryptography and packaging tools

– Section 13: Network tools

– Section 14: Emulators

0-3

2 Compilers and linkers

• A compiler is the main tool for programming

• A compiler translates source code into executable format, possibly opti-
mising and verifying the code for correctness

• C is the most widely used programming language on UNIX systems and
GNU C compiler is the most popular compiler

• GNU Compiler Collection (GCC) provides compilers for Ada, C, C++,
Objective-C, Fortran and Java. Some important commands it provides
are:

– gcc is the C compiler

– g++ is the C++ compiler

• GCC is often used with GNU binutils that provides linker and assembler
tools. Some important command it provides are:

0-4

– as is the assembler

– ld is the linker

0-5

Table 1: Compilers for various programming languages. #FM is the number
of Freshmeat projects by programming language measured at 2007-03-06.

Language Compiler tools #FM

Ada GCC (the GNU Compiler Collection) 68
Assembler GNU binutils, The Netwide Assembler 249

C GCC, Tiny C Compiler 8522
C++ GCC 4552

C# Mono, DotGNU 284
Fortran GCC 86
Haskell Glasgow Haskell Compiler 70

Lisp CLISP, CMUCL, Allegro CL, 87
SBCL, GCL, . . .

Java Sun Java Compiler, GCC 5383
Objective-C GCC 358

0-6

3 Interpreted languages

• Interpreted languages are not compiled and they are not executed di-
rectly: Source code is executed with interpreters

• Interpreters are used extensively on Open Source platforms

– For example, OS initialization system is shell scripted

0-7

• Pros and cons vary between interpreted languages

+ Cheap and fast to install many scripts

+ Easy customization

+ Easy integration of system parts (e.g. by using shell scripts)

+ Rapid prototyping

- Possibly consume lots of memory

- Probably slow

- Possibly harder to verify for correctness due to dynamic typing and
behavior

- Possibly hard to integrate with compiled languages

• Successful interpreted languages begin with letter P :-) See the next
table..

0-8

Table 2: Interpreters for various languages. #FM is the number of Freshmeat
projects by programming language measured at 2007-03-06.

Language Interpreter tool #FM

JavaScript Firefox, . . . 952
Perl Various versions of itself 3723

PHP Various versions 4066
Python Various versions 2695

Ruby Various versions 387
TCL Various versions 488

Unix Shell bash, zsh, sh, . . . 955

0-9

4 Source code tools

Source code tools are used to automatically process source code:

• Automatic code analysis and inspection ; Correct human errors by
using automation

• Avoid manual work by using automation

• Some tools search for patterns

• Some tools search for potential bugs

• Existing Open Source code base and version control repositories are good
material for pattern matching and bug hunt heuristics. Thousands of
bugs have been found by scanning tons of open code.

4.1 Analysis and inspection

• cscope searches for items and patterns from source code (e.g. which
source modules call function X)

0-10

• grep and other standard UNIX tools (grep finds text with regular ex-
pressions)

• Splint is a tool that heuristically searches for suspicious and non-portable
constructs from C source code

• Many text editors can visualise syntax that helps understanding source
code, see Section 8

4.2 Source code cleanup tools

Source code styling is a sensitive subject, often causing serious disagreements
between parties :-) As a partial solution to the problem, various tools have
been created for automatic styling:

• indent reformats C code to different coding styles

0-11

4.3 Patching

• diff/patch tools are used to serialise changes in source tree into a human-
readable short text format. Most version control tools can produce
diff/patch change files.

> diff -u hw.c hw2.c

--- hw.c 2007-03-06 15:59:18.000000000 +0200

+++ hw2.c 2007-03-06 15:59:12.000000000 +0200

@@ -2,6 +2,6 @@

int main(void)

{

- printf("hello word\n");

+ printf("hello world\n");

return 0;

}

• diffstat creates a summary of changed, added and deleted lines from

0-12

diff/patch formatted change file

0-13

5 Debugging tools

“Regression testing”? What’s that? If it compiles, it is good, if it
boots up it is perfect. - Linus Torvalds, 1998-04-08

Debugging has at least 2 functions:

• Help locate bugs that can be observed

• Reverse engineering systems (to gain compatibility, defeat protection
systems, acquire information, . . .)

There are several kinds of debuggers:

• Application debuggers (normal)

• Application monitors

• Kernel debuggers (special)

• Emulator/debugger combinations

0-14

Some common debugging tools:

• GDB: The GNU Project Debugger

• Data Display Debugger is a graphical front-end for GDB

• Strace is a program that allows logging system calls of other programs
(system call parameters and results)

• Valgrind finds memory usage errors from programs by running exe-
cutable programs under an instruction set emulator

0-15

6 Documentation tools

Some common formats and/or methods used to document software:

• DocBook is a markup language for technical documentation. The Doc-
Book format is presentation-neutral, and thus, there are tools to generate
html, pdf, etc from documentation.

• Doxygen is a format that is used to annotate source code from which
documentation can be generated. APIs are often documented with doxy-
gen.

• Javadoc is a source code annotation format for Java, similar to Doxygen

• LATEX is a popular tool for structured documents that have easily read-
able layout and style

• man, a command line help tool that is the de-facto documentation format
for UNIX commands and system calls. For example, man pages are the
authoritative source of information for the OpenBSD.

0-16

• Texinfo - The GNU documentation system is a command line help tool
(info) that is mostly used by the GNU project only

• Web sites

• A Wikipedia-style web site for collaborative documenting. Provides ver-
sioning too.

0-17

7 Version control tools

Version control tools are very important for Open Source projects since:

• Basic requirement: easy method to compare different versions of the
program (or any other data)

• Basic requirement: Easy method to synchronize changes among many
developers

• Developers are distributed over the globe ; need access to source code
over untrusted networks (SSH, https)

• Developers are often untrusted people ; need administrable access to
source code: read-only and write access classes for users

• There are many contributors

• Frequent changes

• No central authority ; distributed version control (e.g. git)

0-18

Table 3: Some popular version control tools
Name Type Comment

CVS Central Old and un-featureful, but
still the most popular

Git Distributed Used for Linux
Subversion Central An enhanced replacement

for CVS

– Each developer has a complete (personal) version tree

– Developers pull changes from each other

– Can be located anywhere (no central repository needed)

– No performance bottleneck of a central server

• Big changes happen, even forking a project ; separate development
branches are needed for new features and testing

0-19

For specific information on version control tools, see
http://en.wikipedia.org/wiki/Comparison of revision control software

0-20

8 Text editors

An infinite number of monkeys typing into GNU emacs would never
make a good program. - Linus Torvalds

Text editors often have one or more of following properties:

• Easy multi-file editing of text (not all editors support multi-file editing)

• Searching and replacing items

• Visualise syntax of some programming languages to ease readability

– Does limited syntax checking ; some errors are caught before com-
pilation

– Code is coloured with respect to syntax

– Code is automatically intended wrt syntax

– This helps understanding code structure and identifying errors

0-21

• Helpers for common programming tasks (version control interface, de-
bugger interaction, documentation browsing, making coffee :-)

• Often work on a text terminal so that it can be operated remotely with
little bandwidth and sufficiently high latency

• Often have small memory and disk footprint ; works on small systems

• Often very short startup time because the program is run frequently

• Often a cause for holy wars, but without any doubt my $EDITOR is the
best

0-22

Table 4: Some common text editors
Name Comment

Ed Ed does line based editing. Does not need a text-terminal.
GNU Emacs The most featureful text-editor.

Has been called an operating system and a religion. . .
JED A text-terminal editor
JOE A text-terminal editor
gedit A graphical editor for GNOME
Kate A graphical editor for KDE
Nano Small and simple text-terminal editor
Vi(m) Small but featureful text-terminal editor
XEmacs A variant of EMACS

0-23

9 Building tools

Build tools can have several properties and functions:

• Configure the program

– Choose compilation options for some target environment

– Set behavioral defaults for program

– Check that system has necessary components and properties for
compilation

– Often generates Makefiles and header files for the compilation phase

• Prepare executable code using specific compilers and tools

– Compile only source modules that are needed

– Compile items in correct order (following build dependency graph)

– Avoid re-compiling by determining which source modules have changed
since last compilation

0-24

– Support parallel builds for multiprocessor systems (make -j2)

– Support distributed (parallel) builds (e.g. distcc)

– Is not limited to code compilation, also generic shell scripts and
transformation utilities may be run during “compilation” (e.g. code
generation tool is run in the beginning of compilation, and then the
generated code is compiled)

• Install the program

– May have to execute arbitrary shell commands to do administrative
tasks (e.g. create a new group or user)

– Files are usually copied to destination with install (1) command.
Install sets file permissions, owner and group correctly for the given
system.

• Create a distributable tar ball or some other package type

• Execute tests

0-25

• The whole build process must be something that can be automated ;

easy building and testing of new releases

Several tools exist:

• Make is the de-facto building tool for Open Source projects

– Make can not determine any project dependencies so the program-
mer must do it by using other tools or by giving them manually

– Make uses a “Makefile” format

– There are several implementations of make, but in the GNU/Linux
world GNU make is used exclusively

– GNU make extends the traditional Makefile format. This has caused
incompatibilities with other systems.

• pkg-config is a tool which is used to determine which components (li-
braries and programs) are installed on the system and what are their
dependencies on other components. Libraries usually come with a “pkg-
config file” that the configuration system can use to find the library and
its headers with the pkg-config tool.

0-26

• GNU Autotools is a set of shell scripts and M4 macros to generate
portable configure scripts

– Generates an sh shell script called configure that can be executed
to configure the project for compilation

– The standard way to compile and install programs using GNU au-
totools is:

> ./configure

> make

(if successful, then:)

> sudo make install

• CMake is a configuration tool that generates Makefiles (or similar).
CMake is more modern than autotools but not so widely used.

• SCons is a configuration and a build tool. SCons determines system
configuration, configures the program and builds it. Makefiles are not
used. SCons is more modern than autotools but not so widely used.

0-27

• Apache Ant is a build tool that is mostly used for Java projects

• Kconfig is a configuration and build tool developed for and used by the
Linux kernel

0-28

10 Integrated development environments (IDEs)

Properties and functions of IDEs:

• Integrate the whole development process under a single tool: Editing,
building, debugging, testing, releasing, version control, documentation
. . .

• Very often graphical tools (e.g. Eclipse)

• Sometimes integrated debugging environment

• Sometimes integrated GUI development

• Some IDEs are build tool or language dependent (e.g. Eclipse is for Java
development)

0-29

Some IDEs:

• Anjuta for C and C++

• Eclipse for C, C++ and Java

• GNU Emacs for almost all common programming languages

• KDevelop for many common programming languages

0-30

11 Reverse engineering tools

Reverse engineering is important for producing compatible Open Source sys-
tems. Reverse engineering tools include:

• Data inspection tools

– Hex dumping tools (od, xxd, . . .)

– Hex editors, pick your $FAVOURITE

– Disassemblers

∗ Non-interactive disassemblers: e.g. objdump from GNU binu-
tils

∗ Interactive disassemblers allowing symbolic name annotation
for binary codes (sadly, the best tools are not Open Source)

• Trace tools (see debuggers and emulators)

• Data capturing tools

0-31

– Kernel tools to sniff and record I/O register reads and writes (many
drivers for OSS kernels have been created this way)

– Network monitoring tools to capture network traffic of a propri-
etary program (Windows network protocols were partly reverse en-
gineered by this method (Samba project))

∗ Wireshark (former ethereal) is the most widely used network
traffic analyzer

0-32

12 Compression, cryptography and packaging
tools

The purpose of compression is to save disk space and network bandwidth. The
most common tools used on UNIX-like systems are

• gzip (.gz)

• bzip2 (.bz2)

• zip

Compression tools are separate to packaging tools:

• tar is the de-facto standard on UNIX for packaging multiple files into a
single file

• zip is used for interoperability with non-UNIX operating systems (e.g.
Windows), zip also does compression

0-33

Cryptography tools are used to verify and sign released tar balls, version
control change sets etc.

• md5sum/sha1sum are used to verify files data content by using a cryp-
tographic one-way hash function, and other things as well:

Compute a 128 bit checksum of the file

> md5sum tools.tex

4cde4d1ab320619e5725bb19d4482470 tools.tex

Find duplicate files under file system hierarchy:

> find /x -type f -print0 |xargs -0 md5sum |sort |uniq -w32 -D

• GNU Privacy Guard / OpenSSL are used to verify origin of files by using
cryptographic signatures

0-34

13 Network tools

There are several network tools that are mainly used for following purposes:

• Authentication (and transport)

– OpenSSH for accessing remote systems in secure fashion

∗ Many version control and other systems use ssh for remote
access

∗ Development and/or execution may happen on a remote system

• Data transfer tools

– netcat is a generic tool for TCP traffic

0-35

Test my new server program at port 1234 on local interface

by feeding it a raw data file over TCP connection

> cat my_data_file |nc 127.0.0.1 1234

Copy files to remote host to port 5678

> tar cv /files* |nc my.address.invalid 5678

– rsync for distributing lots of files efficiently

∗ Transfers only new and changed files

∗ Supports partially changed files so that only changed sub-blocks
are transfered

∗ Uses SSH for transport by default

– sshfs is a user-mountable file system that runs on top of SSH/sftp
(no admin privileges required due to FUSE)

– Version control tools can be used for downloading (some of them
use SSH and/or rsync)

– wget is a tool for scripting web access. It supports FTP, HTTP
and HTTPS

0-36

– curl is a tool for scripting web access. It supports supports FTP,
FTPS, HTTP, HTTPS, SCP, SFTP, . . .

0-37

14 Emulators

Emulators have at least following purposes:

• Running untrusted systems on top of trusted systems

– No matter if the untrusted system tries to break security policies,
it can not do so without approval of the the emulator

• Virtualisation (e.g. run OS A on top of OS B)

• Provide a compatibility layer (e.g. run “applications” of OS A on top of
OS B)

• Developing software (and hardware) for hardware that is not available

– The first operating system for a new CPU family is ported before
the chip has been manufactured

• Debugging and reverse engineering; specifically, full system emulators
make possible:

0-38

– Full system state visibility: for example, without an emulator it is
either impossible or very hard to know what was the exact cycle
counter register value when a specific instruction was executed

– Authentic timing behavior: the debugger does not affect timing of
the application (cycle counters)

∗ Accurate performance profiling possible

∗ All race conditions that can happen on a real system should
also happen under the emulator (sometimes race conditions are
“obscured” by the debugger)

– Authentic run time environment because the emulated application
can not know it is being emulated

There are several operating system or full system emulators available:

• Bochs is an emulator of x86/AMD64 systems

• DOSBox/DOSEMU are used to run (legacy) MS-DOS programs

• QEMU is an emulator running on multiple platforms that emulates mul-
tiple systems

0-39

• Many emulators for old computer systems (e.g. UAE for Amiga com-
puters)

There are some OS virtualisation systems available:

• KVM is an OS virtualisation system that depends on recent processor
extensions on x86/amd64; can potentially run any operating system on
top of Linux

• UML, the User-mode Linux, allows running Linuxes inside Linux. Child
Linuxes are visible as processes under the master Linux.

• Xen allows running OSes an top of a hypervisor. The virtualised operat-
ing system must be ported for the hypervisor so that when ever the child
OS would access some privileged system state it must do it through the
hypervisor.

0-40

There are some application level emulators available:

• Wine runs Windows applications on UNIX systems

– Wine implements Windows APIs natively

– Wine can also be used to run older Windows applications on a
newer Windows OS

0-41

