
UADE 2.xx design specification

Heikki Orsila <heikki.orsila@iki.fi>

1 Introduction

UADE (Unix Amiga Delitracker Emulator) plays various Amiga music formats
by hardware and software emulation. Approximately 200 formats are known to
work more or less properly.

Despite considerable performance requirements of emulating hardware and soft-
ware, UADE requires only approximately 5% CPU resources with a current
(2006-01-01) computer system (2.0 GHz AMD64).

The full system consists of 4 layers shown in Figure 1. The frontend layer handles
all user-interface and high-level control issues. The frontend relays user-induced
commands for the emulator. The emulator is programmed to emulate a reduced
Amiga 500 model and load boot software and data for it. The Amiga model
is called reduced because it lacks functionality of some peripheral devices and
custom graphics chips. It only needs to run MC68000 software to produce sound
through Amigas audio chip. The loaded software consists of 2 two components,
which are the sound core (score) and some eagleplayer plugin. The loaded
data is a song to be played by the eagleplayer plugin. The emulated machine
is booted after this. Boot procedure starts execution from the score, which
initializes emulated hardware and setups an environment that contains some
essential features from AmigaOS and Eagleplayer APIs. The score executes
the eagleplayer plugin to play the music with the data that was loaded. The
eagleplayer plugin can load additional data files from the native host operating
system if required.

This document explains internal issues between the frontend and the emulator.
Interaction between the emulated and native software is not documented.

2 History

UADE 1.xx (2000-04-09) was written to be a stand-alone program without con-
sideration to implementing many different user interfaces (frontends) for it.
There was no internal structure to implement different frontends easily, which
became rapidly a big problem because users requested many different kinds

1



Native code

Emulated code

Eagleplayer plugins

Sound Core (score)

Emulator (uadecore)

Frontend

Figure 1: UADE software layers

of interfaces. By much hacking some kind of pseudo-interface was created to
facilitate following frontends:

• Beep Media Player

• MorphOS shell without interaction

• Unix shell without interaction

• Unix shell with small interaction

• XMMS plugin

To force the separation of user interface and effective functionality, UADE
2.00 (2006-01-01) removed all the user interface code from the emulator part
(uadecore).

3 Message-passing protocol

In UADE 2.xx the emulator (uadecore) became an independent process without
any user interfaces. Any frontend, or client, that wants to use its services
must communicate with the uadecore by using a token-passing based messaging
protocol. The protocol is of course implemented by interprocess communication
(IPC).

The basic idea of the protocol is that the frontend is the client who issues
commands for the server (uadecore). Uadecore may not send any commands at
all. Uadecore only sends replies to commands issued by the client. Also, the
client never replies anything back to the uadecore.

The communication protocol is based on the concept of tokens. Only the party
that has a token (there is only one) may send messages. Messages are either
commands or replies. Client sends messages and uadecore sends replies. Both

2



of them have to send the token back sometimes. The party that doesn’t have
the token must reply to all commands sent by the other party.

Initially the client has the token so it may send commands for the uadecore.

3.1 Messaging protocol commands

The messaging protocol has following commands which are only sent by the
client. There is an exception, however. The uadecore may send a token-
command, but it is not really considered a command. All the commands can
be found from the file src/include/uademsg.h.

Config command is used to pass a file name of the emulation configuration file
for the uadecore. The file is named uaerc.

Score command is used to pass file name of a binary run-time in M68k ma-
chine language for the uadecore. The binary run-time is called score or
sound core. The sound core contains implementations of Eagleplayer and
AmigaOS APIs.

Player command is used to pass a file name of a binary player plugin in M68k
machine language for the uadecore. This is also called an Eagleplayer
plugin.

Module command is used to pass a file name of a song to be played for the
uadecore.

Read command is used to request more sound data from the uadecore.

Reboot command is used to halt playback synthesis of uadecore.

Set subsong command is used to set the initial subsong for playback.

Ignore check command is not necessary (will be documented later, if ever).

Song end not possible command is not necessary.

Set ntsc command is not necessary.

Filter command is not necessary.

Set interpolation mode command is not necessary.

Speed hack command is not necessary.

Change subsong command is not necessary.

Activate debugger command is not necessary.

Token command is used to pass back the token for the other party.

3



3.2 Messaging protocol replies for commands

Messages are answered by following replies. All the replies can be found from
the file src/include/uademsg.h.

MSG reply is just any random text string message that the client should know.
Could be spam, blackmailing, empty threats or last words of a dying
process.

Can’t play reply is issued by the uadecore if it is not able to play a given
triplet of score, player and module.

Can play reply is issued by the uadecore if it can play a given triplet of score,
player and module.

Song end reply is issued by the uadecore to indicate that playback has ended.

Subsong info is issued by the uadecore when it knows the amount of subsongs
contained in the song. This happens a short while after playback has
started, or usually during the first fraction of a second since playback has
been started.

Player name is a reply containing the human (geek?) readable player name
that is decoded by the eagleplayer plugin,

Module name is a reply containing the human readable form of the module
name decoded by the eagleplayer plugin.

Format name is a reply containing the human readable form of the song for-
mat that is being played.

Data reply is issued by the uadecore to pass synthesized sample data back to
the client. This is a reply for the read -command.

.

3.3 Message format

All messages are sent as finite sized byte sequences. Each message begins with
a header shown in Table 1. msgtype field is simply an unsigned 32-bit integer
in a packed binary structure. The integer is sent in network byte-order aka
big-endian format. All integers are sent in big-endian format. The size field
is 32-bit length of the bytes coming after the header (which is in big-endian
format). Notice the use of C99 empty record in a structure (excuse the annoying
GCC feature there that forces the structure to be tightly packed) called data.
data has zero size and thus the whole message size in memory is 8 + size bytes.
The full size must not be over 4096 bytes, and thus size can be at most 4088.

4



Table 1: Messages header
uint32 t msgtype (big-endian)
uint32 t size (big-endian)
uint8 t[] data

Table 2: Short message
uint32 t msgtype
uint32 t 0

There are 3 types of messages: short messages, string messages and custom
messages. Each follow the given low-level format but the contents differs.

Messages C language definition is:

struct uade_msg {

uint32_t msgtype;

uint32_t size;

uint8_t data[];

} __attribute__((packed));

3.3.1 Short message

Short message has the value 0 in size field implying that there is no special
payload with the message. Sending a token, for example, is such a message.
Short messages are sent with uade send short message and received with
uade receive short message. The structure of short message is shown in
Table 2. Table 3 shows all short messages.

Table 3: Short messages
Command Activate debugger
Command Ignore check
Command Reboot
Command Song end not possible
Command Speed hack
Command Token

Reply Can play
Reply Can’t play

5



Table 4: String message
uint32 t msgtype
uint32 t x+ 1, where x is the number of letters.
uint8 t[] x+ 1 bytes.

Table 5: String messages
Command Config
Command Module
Command Player
Command Score
Command Set interpolation mode

Reply Format name
Reply Module name
Reply MSG
Reply Player name

3.3.2 String message

String message is a message containing one zero-terminated text string. A string
message is sent by uade send string and received by uade receive string.
Table 4 shows the structure of a string message. Table 5 shows all string mes-
sages.

3.3.3 Custom message

Custom message is any kind of message which is not short or string message.
We quickly present all different custom messages in following tables.

Table 6 shows format of sound data reply message. Table 7 shows format of
subsong info reply message. Table 8 shows format of song end reply message.
Table 9 shows format of read command message. Table 10 shows format of
filter command message. Table 11 shows format of subsong command messages
which are set subsong and change subsong.

Table 6: Data reply message
uint32 t Reply: Data
uint32 t x, where x is the number of sample data bytes.
uint8 t[] x sample data bytes. The format is 16-bit interleaved

PCM stereo (big-endian).

6



Table 7: Subsong info reply message
uint32 t Reply: Subsong info
uint32 t 12
uint32 t Minimum subsong (big-endian)
uint32 t Maximum subsong (big-endian)
uint32 t Current subsong (big-endian)

Table 8: Song end reply message

uint32 t Reply: Song end
uint32 t 8 + x+ 1, where x is length of an explanation string.
uint32 t Number of bytes of sample data valid in the next data reply (big-endian)
uint32 t Unintentional end: 0 or 1. 0 means unintentional.

1 means an error resulted into the song end. (big-endian)
uint8 t[] x+ 1 bytes containing a textual reason for song end.

Table 9: Read command message
uint32 t Command: Read
uint32 t 4
uint32 t Number of bytes of sample data to be read (big-endian)

Table 10: Filter command message

uint32 t Command: Filter
uint32 t 8
uint32 t Filter type. See src/include/amigafilter.h for values (big-endian).
uint32 t 2x+ y, where x means whether or not filter state should be forced

and y is filter state to be set. Both x and y are either 0 or 1. (big-endian)

Table 11: Subsong command message
uint32 t Command: change subsong or set subsong
uint32 t 4
uint32 t New subsong number (big-endian).

7



4 Interaction example

To illustrate the dialog between client and server, look at the following log
between uade123 and uadecore:

<This is done once during client startup>

uade123: sending string 1 (command: config)

<Here begins play back of new song. this is done for each song.>

uade123: sending string 2 (command: score)

uade123: sending string 3 (command: player)

uade123: sending string 4 (command: module)

uade123: sending message 16 (token pass)

<Now the uadecore is pondering whether or not the thing can be played>

uadecore: sending message 19 (reply: can play)

uadecore: sending message 16 (token pass back)

<It’s okay to play, so send some additional commands for uadecore>

uade123: sending message 11 (command: filter. not needed.)

uade123: sending string 12 (command: interpolation. not needed.)

<Then start audio synthesis by issuing read command>

uade123: sending message 5 (command: read)

uade123: sending message 16 (token pass)

<uadecore starts to synthesize and floods back messages>

uadecore: sending string 17 (reply: message. don’t care.)

uadecore: sending string 22 (reply: player name back. don’t care.)

uadecore: sending string 23 (reply: module name back. don’t care.)

uadecore: sending message 21 (reply: subsong info)

uadecore: sending string 17 (reply: birthday congratulation message)

uadecore: sending message 25 (reply: data)

uadecore: sending message 25 (reply: data)

uadecore: sending message 16 (token back as all the requested data has been sent)

<Okay, the first round of messages was good. Next read then..>

uade123: sending message 5 (command: read. 2nd one actually.)

uade123: sending message 16 (token pass)

uadecore: sending message 25 (reply: data)

uadecore: sending message 25 (replay: data)

...

Based on that log and previous explanation of messages, you should be able
to write an independent frontend by doing little reverse-engineering into uade
headers. More specifically, you need following information:

8



• Message type numbers (see src/include/uademsg.h)

• Filter setting codes (see src/include/amigafilter.h)

• something else you will find out..

Figure 2 shows play loop interaction from client perspective. That is, song
initialization has already happened which means that uadecore configuration,
score, player and module names and other options have been sent already.

5 Portability considerations

Language requirements:

• Limited C99 compiler that has:

– Anonymous initializers for structures: struct foo bar = (struct foo) {.x = y};
– Portable integer types from stdint.h.

Architecture specific parts that need to be implemented:

• User-interface (frontend)

• IPC between a frontend and the emulator may have to implemented. The
unixipc.c module implements the IPC for UNIX systems. The interface for
IPC is generic and an implementation must follow ipcsupport.h headers.
However, the interface can be changed if it causes too much problems for
some system.

Other issues:

• File modes of C fopen() calls. Windows systems have binary and non-
binary modes which is different to UNIX systems. UNIX systems only
have the binary mode. Some fopen() calls may open files without the “b”
flag which means non-binary mode for Windows. As a result there may be
data corrupt when reading binary files such as eagleplayer plugins. Please
check that all fopen calls have the “b” flag set.

9



Figure 2: Play loop interaction from client (frontend) perspective

10


